-
Notifications
You must be signed in to change notification settings - Fork 143
/
Copy pathutils.jl
626 lines (569 loc) · 25.4 KB
/
utils.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
# custom types to represent some special parsing states a column might be in
# not just that a column type is Missing, but that we'll end up dropping the column
# eventually (i.e. implies col.willdrop) or the user specifically set the column
# type to Missing (i.e. col.userprovided && col.type === Missing)
# a column type may be Missing and we still want to try and detect a proper column type
# but in HardMissing case, we don't; we know the column will *always* be Missing
struct HardMissing end
function willdrop!(columns, i)
@inbounds col = columns[i]
col.willdrop = true
col.type = HardMissing
return
end
struct NeedsTypeDetection end
nonmissingtypeunlessmissingtype(::Type{T}) where {T} = ifelse(T === Missing, Missing, nonmissingtype(T))
finaltype(T) = T
finaltype(::Type{HardMissing}) = Missing
finaltype(::Type{NeedsTypeDetection}) = Missing
coltype(col) = ifelse(col.anymissing, Union{finaltype(col.type), Missing}, finaltype(col.type))
maybepooled(col) = col.pool isa Tuple ? (col.pool[1] > 0.0) : (col.pool > 0.0)
function getpool(x)::Union{Float64, Tuple{Float64, Int}}
if x isa Bool
return x ? 1.0 : 0.0
elseif x isa Tuple
y = Float64(x[1])
(isnan(y) || 0.0 <= y <= 1.0) || throw(ArgumentError("pool tuple 1st argument must be in the range: 0.0 <= x <= 1.0"))
try
z = Int(x[2])
@assert z > 0
return (y, z)
catch
throw(ArgumentError("pool tuple 2nd argument must be a positive integer > 0"))
end
else
y = Float64(x)
(isnan(y) || 0.0 <= y <= 1.0) || throw(ArgumentError("pool argument must be in the range: 0.0 <= x <= 1.0"))
return y
end
end
tupcat(::Type{Tuple{}}, S) = Tuple{S}
tupcat(::Type{Tuple{T}}, S) where {T} = Tuple{T, S}
tupcat(::Type{Tuple{T, T2}}, S) where {T, T2} = Tuple{T, T2, S}
tupcat(::Type{Tuple{T, T2, T3}}, S) where {T, T2, T3} = Tuple{T, T2, T3, S}
tupcat(::Type{Tuple{T, T2, T3, T4}}, S) where {T, T2, T3, T4} = Tuple{T, T2, T3, T4, S}
tupcat(::Type{T}, S) where {T <: Tuple} = Tuple{Any[(fieldtype(T, i) for i = 1:fieldcount(T))..., S]...}
const StringTypes = Union{Type{String}, Type{PosLenString}, Type{<:InlineString}}
pickstringtype(T, maxstringsize) = T === InlineString ? (maxstringsize < DEFAULT_MAX_INLINE_STRING_LENGTH ? InlineStringType(maxstringsize) : String) : T
# we define our own bit flag on a Parsers.ReturnCode to signal if a column needs to promote to string
const PROMOTE_TO_STRING = 0b0100000000000000 % Int16
promote_to_string(code) = code & PROMOTE_TO_STRING > 0
isinttype(T) = T === Int8 || T === Int16 || T === Int32 || T === Int64 || T === Int128
@inline function promote_types(@nospecialize(T), @nospecialize(S))
T === S && return T
T === NeedsTypeDetection && return S
S === NeedsTypeDetection && return T
T === Missing && return S
S === Missing && return T
isinttype(T) && isinttype(S) && return promote_type(T, S)
isinttype(T) && S === Float64 && return S
T === Float64 && isinttype(S) && return T
T <: InlineString && S <: InlineString && return promote_type(T, S)
(T === String || S === String) && return String
T <: InlineString && return T
S <: InlineString && return S
return nothing
end
# when users pass non-standard types, we need to keep track of them in a Tuple{...} to generate efficient custom parsing kernel codes
@inline function nonstandardtype(T)
T = nonmissingtype(T)
if T === Union{} ||
T === NeedsTypeDetection ||
T isa StringTypes ||
isinttype(T) ||
T === Float16 ||
T === Float32 ||
T === Float64 ||
T === Bool ||
T === Date ||
T === DateTime ||
T === Time
return Union{}
end
return T
end
## column array allocating
# we don't want to use SentinelVector for small integer types due to the higher risk of
# sentinel value collision, so we just use Vector{Union{T, Missing}} and convert to Vector{T} if no missings were found
const SmallIntegers = Union{Int8, UInt8, Int16, UInt16, Int32, UInt32}
const SVec{T} = SentinelVector{T, T, Missing, Vector{T}}
const SVec2{T} = SentinelVector{T, typeof(undef), Missing, Vector{T}}
promotevectype(::Type{T}) where {T <: Union{Bool, SmallIntegers}} = vectype(T)
promotevectype(::Type{T}) where {T} = SentinelVector{T}
# allocate columns for a full file
function allocate!(columns, rowsguess)
for i = 1:length(columns)
@inbounds col = columns[i]
# if the type hasn't been detected yet, then column will get allocated
# in the detect method while parsing
if col.type !== NeedsTypeDetection
col.column = allocate(col.type, rowsguess)
end
end
return
end
setmissing!(col, i) = col[i] = missing
const POSLEN_MISSING = PosLen(0, 0, true)
setmissing!(col::Vector{PosLen}, i) = col[i] = POSLEN_MISSING
@inline function allocate(T, len)
if T === NeedsTypeDetection || T === HardMissing || T === Missing
# MissingVector is an efficient representation in SentinelArrays.jl package
return MissingVector(len)
elseif T === PosLenString
A = Vector{PosLen}(undef, len)
memset!(pointer(A), typemax(UInt8), sizeof(A))
return A
elseif T === String
return SentinelVector{String}(undef, len)
elseif T === Bool
return Vector{Union{Missing, Bool}}(undef, len)
elseif T <: SmallIntegers
return Vector{Union{Missing, T}}(undef, len)
else
return SentinelVector{T}(undef, len)
end
end
function reallocate!(@nospecialize(A), len)
if A isa Vector{PosLen}
oldlen = length(A)
resize!(A, len)
# when reallocating, we just need to make sure the missing bit is set for lazy string PosLen
memset!(pointer(A, oldlen + 1), typemax(UInt8), (len - oldlen) * 8)
else
resize!(A, len)
end
return
end
firstarray(x::ChainedVector) = x.arrays[1]
columntype(::Type{T}) where {T <: Union{Bool, SmallIntegers}} = Vector{Union{T, Missing}}
columntype(::Type{T}) where {T} = isbitstype(T) ? SVec{T} : SVec2{T}
columntype(::Type{PosLenString}) = Vector{PosLen}
vectype(::Type{T}) where {T <: Union{Bool, SmallIntegers}} = Vector{Union{T, Missing}}
vectype(::Type{T}) where {T} = isbitstype(T) ? SVec{T} : SVec2{T}
vectype(::Type{PosLenString}) = PosLenStringVector{Union{PosLenString, Missing}}
pooledvectype(::Type{T}) where {T} = PooledVector{Union{T, Missing}, UInt32, Vector{UInt32}}
pooledtype(::Type{T}) where {T} = PooledVector{T, UInt32, Vector{UInt32}}
# missingvectype(::PooledVector{T, R, AT}) where {T, R, AT} = PooledVector{Union{T, Missing}, R, AT}
_promote(::Type{A}, x::A) where {A} = x
_promote(::Type{A}, x::MissingVector) where {A <: AbstractVector{T}} where {T} = allocate(Base.nonmissingtype(T), length(x))
_promote(::Type{A}, x::Vector) where {A <: SentinelArray{T}} where {T} = convert(SentinelVector{T}, x)
_promote(::Type{Vector{T}}, x::Vector) where {T} = convert(Vector{T}, x)
_promote(::Type{A}, x::SentinelVector) where {A <: SentinelVector{T}} where {T} = convert(SentinelVector{T}, x)
_promote(::Type{PosLenStringVector{Union{PosLenString, Missing}}}, x::PosLenStringVector{PosLenString}) = PosLenStringVector{Union{PosLenString, Missing}}(x.data, x.poslens, x.e)
_promote(::Type{PosLenStringVector{Union{PosLenString, Missing}}}, x::MissingVector) = PosLenStringVector{Union{PosLenString, Missing}}(UInt8[], fill(POSLEN_MISSING, x.len), 0x00)
_promote(::Type{PooledVector{Union{T, Missing}, R, RA}}, x::PooledVector) where {T, R, RA} =
PooledArray(PooledArrays.RefArray(x.refs), convert(Dict{Union{T, Missing}, UInt32}, x.invpool), convert(Vector{Union{T, Missing}}, x.pool))
_promote(::Type{PooledVector{Union{T, Missing}, R, RA}}, x::MissingVector) where {T, R, RA} =
PooledArray(PooledArrays.RefArray(fill(UInt32(1), length(x))), Dict{Union{T, Missing}, UInt32}(missing => UInt32(1)), Union{T, Missing}[missing])
_promote(::Type{PooledVector{T, R, RA}}, x) where {T, R, RA} = PooledArray{T}(x)
_promote(::Type{PooledVector{T, R, RA}}, x::PooledVector{T, R, RA}) where {T, R, RA} = x # avoid ambiguity
_promote(::Type{PooledVector{T, R, RA}}, x::PooledVector{T, R, RA}) where {T>:Missing, R, RA} = x # avoid ambiguity
function chaincolumns!(@nospecialize(a), @nospecialize(b))
if a isa PooledArray || b isa PooledArray
# special-case PooledArrays apart from other container types
# because we want the outermost array to be PooledArray instead of ChainedVector
if eltype(a) == eltype(b)
if a isa PooledArray
return append!(a, b)
else
px = _promote(pooledtype(eltype(a)), a)
return append!(px, b)
end
elseif a isa MissingVector
P = pooledvectype(eltype(b))
elseif b isa MissingVector
P = pooledvectype(eltype(a))
elseif eltype(a) >: Missing || eltype(b) >: Missing
P = pooledvectype(promote_types(Base.nonmissingtype(eltype(a)), Base.nonmissingtype(eltype(b))))
else
# both arrays are non-missing, but not same eltype, just need to promote
P = pooledtype(promote_types(eltype(a), eltype(b)))
end
px = _promote(P, a)
py = _promote(P, b)
return append!(px, py)
end
c = firstarray(a)
if typeof(c) == typeof(b)
# easiest case; vector types match, so just append
return append!(a, b)
elseif c isa MissingVector
A = vectype(Base.nonmissingtype(eltype(b)))
elseif b isa MissingVector
A = vectype(Base.nonmissingtype(eltype(c)))
elseif c isa Vector && b isa SentinelVector
A = vectype(promote_types(eltype(c), Base.nonmissingtype(eltype(b))))
elseif c isa SentinelVector && b isa Vector
A = vectype(promote_types(Base.nonmissingtype(eltype(c)), eltype(b)))
elseif c isa PosLenStringVector{PosLenString} && b isa PosLenStringVector{Union{PosLenString, Missing}}
A = typeof(b)
elseif c isa PosLenStringVector{Union{PosLenString, Missing}} && b isa PosLenStringVector{PosLenString}
A = typeof(c)
elseif c isa Vector{Bool} && b isa Vector{Union{Bool, Missing}}
A = typeof(b)
elseif c isa Vector{Union{Bool, Missing}} && b isa Vector{Bool}
A = typeof(c)
elseif c isa Vector{<:SmallIntegers} && b isa Vector{<:Union{SmallIntegers, Missing}}
A = typeof(b)
elseif c isa Vector{<:Union{SmallIntegers, Missing}} && b isa Vector{<:SmallIntegers}
A = typeof(c)
elseif c isa Vector && b isa Vector
# two vectors, but we know eltype doesn't match, so try to promote
A = Vector{promote_types(eltype(c), eltype(b))}
elseif c isa SentinelVector && b isa SentinelVector
A = vectype(promote_types(Base.nonmissingtype(eltype(c)), Base.nonmissingtype(eltype(b))))
end
x = ChainedVector([_promote(A, x) for x in a.arrays])
y = _promote(A, b)
return append!(x, y)
end
# one-liner suggested from ScottPJones
consumeBOM(buf, pos) = (length(buf) >= 3 && buf[pos] == 0xef && buf[pos + 1] == 0xbb && buf[pos + 2] == 0xbf) ? pos + 3 : pos
if isdefined(Base,:wrap)
__wrap(x,pos) = Base.wrap(Array,x,pos)
else
__wrap(x,pos) = x
end
# whatever input is given, turn it into an AbstractVector{UInt8} we can parse with
@inline function getbytebuffer(x, buffer_in_memory)
tfile = nothing
if x isa Vector{UInt8}
return x, 1, length(x), tfile
elseif x isa SubArray{UInt8, 1, Vector{UInt8}}
return parent(x), first(x.indices[1]), last(x.indices[1]), tfile
elseif x isa StringCodeUnits
return unsafe_wrap(Vector{UInt8}, x.s), 1, length(x), tfile
elseif x isa IOBuffer
if x.data isa Vector{UInt8}
return x.data, x.ptr, x.size, tfile
elseif x.data isa SubArray{UInt8}
x = x.data
return parent(x), first(x.indices), last(x.indices), tfile
else #support from IOBuffer containing Memory
y = __wrap(x.data,length(x.data)) #generates a Vector{UInt8} from Memory{UInt8}
return y, x.ptr, x.size, tfile
end
elseif x isa Cmd || x isa IO
if buffer_in_memory
buf = Base.read(x isa Cmd ? open(x) : x)
else
buf, tfile = buffer_to_tempfile(CodecZlib.TranscodingStreams.Noop(), x isa Cmd ? open(x) : x)
end
return buf, 1, length(buf), tfile
else
try
buf = Mmap.mmap(string(x))
return buf, 1, length(buf), tfile
catch e
# if we can't mmap, try just buffering the whole thing into a tempfile byte vector
if buffer_in_memory
buf = Base.read(x)
else
buf, tfile = buffer_to_tempfile(CodecZlib.TranscodingStreams.Noop(), open(x))
end
return buf, 1, length(buf), tfile
end
end
end
function getsource(@nospecialize(x), buffer_in_memory)
buf, pos, len, tfile = getbytebuffer(x, buffer_in_memory)::Tuple{Vector{UInt8},Int,Int,Union{Nothing,String}}
if length(buf) >= 2 && buf[1] == 0x1f && buf[2] == 0x8b
# gzipped source, gunzip it
if buffer_in_memory
buf = transcode(GzipDecompressor, buf)
else
# 917; if we already buffered input to tempfile, make sure the compressed tempfile is
# cleaned up since we're only passing the *uncompressed* tempfile up for removal post-parsing
tfile1 = tfile === nothing ? nothing : tfile
buf, tfile = buffer_to_tempfile(GzipDecompressor(), IOBuffer(buf))
if tfile1 !== nothing
rm(tfile1; force=true)
end
end
pos = 1
len = length(buf)
end
return buf, pos, len, tfile
end
@inline function buffer_to_tempfile(codec, x)
file, output = mktemp()
stream = CodecZlib.TranscodingStream(codec, output)
Base.write(stream, x)
close(stream)
return Mmap.mmap(file), file
end
@inline function getname(x)
if x isa AbstractVector{UInt8}
return "<raw byte buffer: $(hash(x))>"
elseif x isa IO
return string("<", typeof(x), ": $(hash(x))>")
else
return string(x)
end
end
# normalizing column name utilities
const RESERVED = Set(["local", "global", "export", "let",
"for", "struct", "while", "const", "continue", "import",
"function", "if", "else", "try", "begin", "break", "catch",
"return", "using", "baremodule", "macro", "finally",
"module", "elseif", "end", "quote", "do"])
normalizename(name::Symbol) = name
function normalizename(name::String)::Symbol
uname = strip(Unicode.normalize(name))
id = Base.isidentifier(uname) ? uname : map(c->Base.is_id_char(c) ? c : '_', uname)
cleansed = string((isempty(id) || !Base.is_id_start_char(id[1]) || id in RESERVED) ? "_" : "", id)
return Symbol(replace(cleansed, r"(_)\1+"=>"_"))
end
function makeunique(names)
set = Set(names)
length(set) == length(names) && return Symbol[Symbol(x) for x in names]
nms = Symbol[]
nextsuffix = Dict{eltype(names), UInt}()
for nm in names
if haskey(nextsuffix, nm)
k = nextsuffix[nm]
newnm = Symbol("$(nm)_$k")
while newnm in set || haskey(nextsuffix, newnm)
k += 1
newnm = Symbol("$(nm)_$k")
end
nextsuffix[nm] = k + 1
nm = newnm
end
push!(nms, nm)
nextsuffix[nm] = 1
end
@assert length(names) == length(nms)
return nms
end
getordefault(x::AbstractDict{String}, nm, i, def) = haskey(x, string(nm)) ? x[string(nm)] : def
getordefault(x::AbstractDict{Symbol}, nm, i, def) = haskey(x, nm) ? x[nm] : def
getordefault(x::AbstractDict{Int}, nm, i, def) = haskey(x, i) ? x[i] : def
function getordefault(x::AbstractDict{Regex}, nm, i, def)
for (re, T) in x
contains(string(nm), re) && return T
end
return def
end
function getordefault(x::AbstractDict, nm, i, def)
return if haskey(x, i)
x[i]
elseif haskey(x, nm)
x[nm]
elseif haskey(x, string(nm))
x[string(nm)]
else
val = _firstmatch(x, string(nm))
val !== nothing ? val : def
end
end
# return the first value in `x` with a `key::Regex` that matches on `nm`
function _firstmatch(x::AbstractDict, nm::AbstractString)
for (k, T) in x
k isa Regex && contains(nm, k) && return T
end
return nothing
end
# given a DateFormat, is it meant for parsing Date, DateTime, or Time?
function timetype(df::Parsers.Format)::Union{Type{Date}, Type{Time}, Type{DateTime}}
date = false
time = false
for token in df.tokens
T = typeof(token)
if T in (Dates.DatePart{'H'}, Dates.DatePart{'I'}, Dates.DatePart{'M'}, Dates.DatePart{'S'}, Dates.DatePart{'s'})
time = true
elseif T in (Dates.DatePart{'y'}, Dates.DatePart{'Y'}, Dates.DatePart{'m'}, Dates.DatePart{'d'}, Dates.DatePart{'u'}, Dates.DatePart{'U'})
date = true
end
end
return ifelse(date & time, DateTime, ifelse(time, Time, Date))
end
# if a cell value of a csv file has escape characters, we need to unescape it
function unescape(s, e)
n = ncodeunits(s)
buf = Base.StringVector(n)
len = 1
i = 1
@inbounds begin
while i <= n
b = codeunit(s, i)
if b == e
i += 1
b = codeunit(s, i)
end
@inbounds buf[len] = b
len += 1
i += 1
end
end
resize!(buf, len - 1)
return String(buf)
end
"""
CSV.detect(str::String)
Use the same logic used by `CSV.File` to detect column types, to parse a value from a plain string.
This can be useful in conjunction with the `CSV.Rows` type, which returns each cell of a file as a String.
The order of types attempted is: `Int`, `Float64`, `Date`, `DateTime`, `Bool`, and if all fail, the input String is returned.
No errors are thrown.
For advanced usage, you can pass your own `Parsers.Options` type as a keyword argument `option=ops` for sentinel value detection.
"""
function detect end
@inline pass(code, tlen, x, typecode) = (code, tlen, x, typecode)
function detect(str::String; opts=Parsers.OPTIONS)
code, tlen, x, xT = detect(pass, codeunits(str), 1, sizeof(str), opts, true)
return something(x, str)
end
const DetectTypes = Union{Missing, Int8, Int16, Int32, Int64, Float64, Date, DateTime, Time, Bool, Nothing, PosLen}
const NEEDSTYPEDETECTION = 0x01
const HARDMISSING = 0x02
const MISSING = 0x03
const INT8 = 0x04
const INT16 = 0x05
const INT32 = 0x06
const INT64 = 0x07
const FLOAT64 = 0x08
const DATE = 0x09
const DATETIME = 0x0a
const TIME = 0x0b
const BOOL = 0x0c
const STRING = 0x0d
const TYPES = Union{Nothing, Type}[NeedsTypeDetection, HardMissing, Missing, Int8, Int16, Int32, Int64, Float64, Date, DateTime, Time, Bool, nothing]
isinttypecode(T) = T === INT8 || T === INT16 || T === INT32 || T === INT64
promote_typecode(a, b) = max(a, b)
typecode(@nospecialize(T)) = T === Missing ? MISSING : T === Int8 ? INT8 : T === Int16 ? INT16 : T === Int32 ? INT32 : T === Int64 ? INT64 :
T === Float64 ? FLOAT64 : T === Date ? DATE : T === DateTime ? DATETIME : T === Time ? TIME : T === Bool ? BOOL :
T === NeedsTypeDetection ? NEEDSTYPEDETECTION : T === HardMissing ? HARDMISSING : STRING
concrete_or_concreteunion(T) = isconcretetype(T) ||
(T isa Union && concrete_or_concreteunion(T.a) && concrete_or_concreteunion(T.b))
@inline smallestint(cb, code, tlen, x) = x < typemax(Int8) ? cb(code, tlen, unsafe_trunc(Int8, x), INT8) : x < typemax(Int16) ? cb(code, tlen, unsafe_trunc(Int16, x), INT16) : x < typemax(Int32) ? cb(code, tlen, unsafe_trunc(Int32, x), INT32) : cb(code, tlen, x, INT64)
_widen(T) = widen(T)
_widen(::Type{Int128}) = Float64
_widen(::Type{Float64}) = nothing
@noinline function _parseany(T, buf, pos, len, opts)::Parsers.Result{Any}
return Parsers.xparse(T, buf, pos, len, opts, Any)
end
@inline function detect(cb, buf, pos, len, opts, ensure_full_buf_consumed=true, downcast=false, row=0, col=0)
int = Parsers.xparse(Int, buf, pos, len, opts)
code, tlen = int.code, int.tlen
if Parsers.invalidquotedfield(code)
fatalerror(buf, pos, tlen, code, row, col)
end
if Parsers.sentinel(code) && code > 0
return cb(code, tlen, missing, NEEDSTYPEDETECTION)
end
if Parsers.ok(code) && (!ensure_full_buf_consumed || (ensure_full_buf_consumed == ((pos + tlen - 1) == len)))
return downcast ? smallestint(cb, code, tlen, int.val) : cb(code, tlen, int.val, Int === Int64 ? INT64 : INT32)
end
float = Parsers.xparse(Float64, buf, pos, len, opts)
code, tlen = float.code, float.tlen
if Parsers.ok(code) && (!ensure_full_buf_consumed || (ensure_full_buf_consumed == ((pos + tlen - 1) == len)))
return cb(code, tlen, float.val, FLOAT64)
end
if opts.dateformat === nothing
date = Parsers.xparse(Date, buf, pos, len, opts, Date)
code, tlen = date.code, date.tlen
if Parsers.ok(code) && (!ensure_full_buf_consumed || (ensure_full_buf_consumed == ((pos + tlen - 1) == len)))
return cb(code, tlen, date.val, DATE)
end
datetime = Parsers.xparse(DateTime, buf, pos, len, opts)
code, tlen = datetime.code, datetime.tlen
if Parsers.ok(code) && (!ensure_full_buf_consumed || (ensure_full_buf_consumed == ((pos + tlen - 1) == len)))
return cb(code, tlen, datetime.val, DATETIME)
end
time = Parsers.xparse(Time, buf, pos, len, opts)
code, tlen = time.code, time.tlen
if Parsers.ok(code) && (!ensure_full_buf_consumed || (ensure_full_buf_consumed == ((pos + tlen - 1) == len)))
return cb(code, tlen, time.val, TIME)
end
else
# use user-provided dateformat
DT = timetype(opts.dateformat)
if DT === Date
dt = Parsers.xparse(DT, buf, pos, len, opts)
code, tlen = dt.code, dt.tlen
if Parsers.ok(code) && (!ensure_full_buf_consumed || (ensure_full_buf_consumed == ((pos + tlen - 1) == len)))
return cb(code, tlen, dt.val, DATE)
end
elseif DT === Time
dt2 = Parsers.xparse(DT, buf, pos, len, opts)
code, tlen = dt2.code, dt2.tlen
if Parsers.ok(code) && (!ensure_full_buf_consumed || (ensure_full_buf_consumed == ((pos + tlen - 1) == len)))
return cb(code, tlen, dt2.val, TIME)
end
elseif DT === DateTime
dt3 = Parsers.xparse(DT, buf, pos, len, opts)
code, tlen = dt3.code, dt3.tlen
if Parsers.ok(code) && (!ensure_full_buf_consumed || (ensure_full_buf_consumed == ((pos + tlen - 1) == len)))
return cb(code, tlen, dt3.val, DATETIME)
end
end
end
bool = Parsers.xparse(Bool, buf, pos, len, opts)
code, tlen = bool.code, bool.tlen
if Parsers.ok(code) && (!ensure_full_buf_consumed || (ensure_full_buf_consumed == ((pos + tlen - 1) == len)))
return cb(code, tlen, bool.val, BOOL)
end
return cb(code, tlen, nothing, STRING)
end
# a ReversedBuf takes a byte vector and indexes backwards;
# used for the footerskip keyword argument, which starts at the bottom of the file
# and skips lines backwards
struct ReversedBuf <: AbstractVector{UInt8}
buf::Vector{UInt8}
end
Base.size(a::ReversedBuf) = size(a.buf)
Base.IndexStyle(::Type{ReversedBuf}) = Base.IndexLinear()
Base.getindex(a::ReversedBuf, i::Int) = a.buf[end + 1 - i]
Base.pointer(a::ReversedBuf, pos::Integer=1) = pointer(a.buf, length(a.buf) + 1 - pos)
memset!(ptr, value, num) = ccall(:memset, Ptr{Cvoid}, (Ptr{Cvoid}, Cint, Csize_t), ptr, value, num)
struct PointerString
ptr::Ptr{UInt8}
len::Int
end
function Base.hash(s::PointerString, h::UInt)
h += Base.memhash_seed
ccall(Base.memhash, UInt, (Ptr{UInt8}, Csize_t, UInt32), s.ptr, s.len, h % UInt32) + h
end
import Base: ==
function ==(x::AbstractString, y::PointerString)
sizeof(x) == y.len && ccall(:memcmp, Cint, (Ptr{UInt8}, Ptr{UInt8}, Csize_t), pointer(x), y.ptr, y.len) == 0
end
function ==(x::PointerString, y::PointerString)
x.len == y.len && ccall(:memcmp, Cint, (Ptr{UInt8}, Ptr{UInt8}, Csize_t), x.ptr, y.ptr, y.len) == 0
end
==(y::PointerString, x::AbstractString) = x == y
Base.ncodeunits(s::PointerString) = s.len
@inline function Base.codeunit(s::PointerString, i::Integer)
@boundscheck checkbounds(s, i)
GC.@preserve s unsafe_load(s.ptr + i - 1)
end
_unsafe_string(p, len) = ccall(:jl_pchar_to_string, Ref{String}, (Ptr{UInt8}, Int), p, len)
Base.String(x::PointerString) = _unsafe_string(x.ptr, x.len)
WeakRefStrings.PosLenString(x::PointerString) = PosLenString(unsafe_wrap(Array, x.ptr, x.len), PosLen(1, x.len), 0x00)
struct Arg
x::Any
end
Base.getindex(x::Arg) = x.x
macro refargs(ex)
ex isa Expr || throw(ArgumentError("must pass an expression to @refargs"))
(ex.head == :call || ex.head == :function) || throw(ArgumentError("@refargs ex must be function call or definition"))
if ex.head == :call
for i = 2:length(ex.args)
ex.args[i] = Expr(:call, :(CSV.Arg), ex.args[i])
end
return esc(ex)
else # ex.head == :function
refs = Expr(:block)
fargs = ex.args[1].args
for i = 2:length(fargs)
arg = fargs[i]
(arg isa Symbol || arg.head == :(::)) || throw(ArgumentError("unsupported argument expression: `$arg`"))
nm = arg isa Symbol ? arg : arg.args[1]
T = arg isa Symbol ? :Any : arg.args[2]
push!(refs.args, Expr(:(=), Expr(:(::), nm, T), Expr(:ref, nm)))
fargs[i] = Expr(:(::), nm, :(CSV.Arg))
end
pushfirst!(ex.args[2].args, refs)
return esc(ex)
end
end