Commit(s): JuliaLang/julia@394bc4ae7caeb85d6a20e61647f05fe05e1344dd vs JuliaLang/julia@c44644442949238da70670b547312ca1ae9a9c7d
Triggered By: link
Tag Predicate: ALL
Note: If Chrome is your browser, I strongly recommend installing the Wide GitHub extension, which makes the result table easier to read.
Below is a table of this job's results, obtained by running the benchmarks found in
JuliaCI/BaseBenchmarks.jl. The values
listed in the ID
column have the structure [parent_group, child_group, ..., key]
,
and can be used to index into the BaseBenchmarks suite to retrieve the corresponding
benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true" time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
A ratio greater than 1.0
denotes a possible regression (marked with ❌), while a ratio less
than 1.0
denotes a possible improvement (marked with ✅). Only significant results - results
that indicate possible regressions or improvements - are shown below (thus, an empty table means that all
benchmark results remained invariant between builds).
ID | time ratio | memory ratio |
---|---|---|
["array", "cat", "(\"catnd\", 5)"] |
1.06 (15%) | 1.04 (1%) ❌ |
["array", "cat", "(\"catnd_setind\", 5)"] |
1.96 (15%) ❌ | 1.10 (1%) ❌ |
["array", "comprehension", "(\"collect\", \"Array{Float64,1}\")"] |
0.62 (15%) ✅ | 1.00 (1%) |
["array", "comprehension", "(\"collect\", \"StepRangeLen{Float64,Base.TwicePrecision{Float64},Base.TwicePrecision{Float64}}\")"] |
0.81 (15%) ✅ | 1.00 (1%) |
["array", "comprehension", "(\"comprehension_collect\", \"Array{Float64,1}\")"] |
0.65 (15%) ✅ | 1.00 (1%) |
["array", "comprehension", "(\"comprehension_collect\", \"StepRangeLen{Float64,Base.TwicePrecision{Float64},Base.TwicePrecision{Float64}}\")"] |
0.77 (15%) ✅ | 1.00 (1%) |
["array", "comprehension", "(\"comprehension_iteration\", \"Array{Float64,1}\")"] |
0.81 (15%) ✅ | 1.00 (1%) |
["array", "index", "(\"sumvector\", \"1.0:0.00010001000100010001:2.0\")"] |
12.53 (50%) ❌ | 2.56 (1%) ❌ |
["array", "index", "(\"sumvector\", \"1.0:1.0:100000.0\")"] |
12.54 (50%) ❌ | 2.56 (1%) ❌ |
["array", "index", "(\"sumvector\", \"100000:-1:1\")"] |
12.13 (50%) ❌ | 2.56 (1%) ❌ |
["array", "index", "(\"sumvector\", \"1:100000\")"] |
13.50 (50%) ❌ | 2.56 (1%) ❌ |
["array", "index", "(\"sumvector_view\", \"1.0:0.00010001000100010001:2.0\")"] |
14.85 (50%) ❌ | 2.56 (1%) ❌ |
["array", "index", "(\"sumvector_view\", \"1.0:1.0:100000.0\")"] |
15.88 (50%) ❌ | 2.56 (1%) ❌ |
["array", "index", "(\"sumvector_view\", \"100000:-1:1\")"] |
10.87 (50%) ❌ | 2.67 (1%) ❌ |
["array", "index", "(\"sumvector_view\", \"1:100000\")"] |
17.56 (50%) ❌ | 2.79 (1%) ❌ |
["collection", "queries & updates", "(\"Dict\", \"Int\", \"pop!\", \"specified\")"] |
0.73 (25%) ✅ | 1.00 (1%) |
["collection", "queries & updates", "(\"Dict\", \"Int\", \"pop!\", \"unspecified\")"] |
0.70 (25%) ✅ | 1.00 (1%) |
["collection", "queries & updates", "(\"Dict\", \"Int\", \"push!\", \"new\")"] |
0.55 (25%) ✅ | 1.00 (1%) |
["collection", "queries & updates", "(\"Dict\", \"Int\", \"setindex!\", \"new\")"] |
0.53 (25%) ✅ | 1.00 (1%) |
["collection", "queries & updates", "(\"Set\", \"Any\", \"push!\", \"overwrite\")"] |
1.27 (25%) ❌ | 1.00 (1%) |
["collection", "set operations", "(\"Set\", \"Int\", \"⊆\", \"self\")"] |
0.46 (25%) ✅ | 1.00 (1%) |
["micro", "mandel"] |
1.00 (15%) | 1.09 (1%) ❌ |
["parallel", "remotecall", "(\"identity\", 1024)"] |
1.00 (15%) | 1.05 (1%) ❌ |
["parallel", "remotecall", "(\"identity\", 2)"] |
1.02 (15%) | 1.10 (1%) ❌ |
["parallel", "remotecall", "(\"identity\", 4096)"] |
1.01 (15%) | 1.02 (1%) ❌ |
["parallel", "remotecall", "(\"identity\", 512)"] |
1.02 (15%) | 1.06 (1%) ❌ |
["parallel", "remotecall", "(\"identity\", 64)"] |
1.01 (15%) | 1.09 (1%) ❌ |
["random", "collections", "(\"rand\", \"ImplicitRNG\", \"small Set\")"] |
0.59 (25%) ✅ | 1.00 (1%) |
["random", "collections", "(\"rand\", \"MersenneTwister\", \"small Dict\")"] |
0.72 (25%) ✅ | 1.00 (1%) |
["random", "collections", "(\"rand\", \"MersenneTwister\", \"small Set\")"] |
0.68 (25%) ✅ | 1.00 (1%) |
["random", "randstring", "(\"randstring\", \"MersenneTwister\")"] |
13.89 (25%) ❌ | 4.13 (1%) ❌ |
["random", "randstring", "(\"randstring\", \"MersenneTwister\", 100)"] |
3.46 (25%) ❌ | 2.25 (1%) ❌ |
["random", "randstring", "(\"randstring\", \"MersenneTwister\", \"\\\"qwèrtï\\\"\")"] |
5.62 (25%) ❌ | 2.00 (1%) ❌ |
["random", "randstring", "(\"randstring\", \"MersenneTwister\", \"\\\"qwèrtï\\\"\", 100)"] |
1.59 (25%) ❌ | 1.35 (1%) ❌ |
["random", "randstring", "(\"randstring\", \"MersenneTwister\", \"collect(UInt8, \\\"qwerty\\\"\")"] |
13.10 (25%) ❌ | 4.13 (1%) ❌ |
["random", "randstring", "(\"randstring\", \"MersenneTwister\", \"collect(UInt8, \\\"qwerty\\\"\", 100)"] |
2.41 (25%) ❌ | 2.25 (1%) ❌ |
["random", "types", "(\"rand\", \"MersenneTwister\", \"Complex{Float16}\")"] |
0.74 (25%) ✅ | 1.00 (1%) |
["random", "types", "(\"rand\", \"MersenneTwister\", \"UInt32\")"] |
0.60 (25%) ✅ | 1.00 (1%) |
["scalar", "acos", "(\"small\", \"positive argument\", \"Float64\")"] |
1.44 (15%) ❌ | 1.00 (1%) |
["scalar", "asinh", "(\"very large\", \"negative argument\", \"Float32\")"] |
1.41 (15%) ❌ | 1.00 (1%) |
["scalar", "atan", "(\"19/16 <= abs(x) < 39/16\", \"negative argument\", \"Float64\")"] |
1.25 (15%) ❌ | 1.00 (1%) |
["scalar", "atan", "(\"19/16 <= abs(x) < 39/16\", \"positive argument\", \"Float64\")"] |
1.25 (15%) ❌ | 1.00 (1%) |
["scalar", "atan", "(\"7/16 <= abs(x) < 11/16\", \"negative argument\", \"Float64\")"] |
1.25 (15%) ❌ | 1.00 (1%) |
["scalar", "atan", "(\"7/16 <= abs(x) < 11/16\", \"positive argument\", \"Float64\")"] |
1.25 (15%) ❌ | 1.00 (1%) |
["scalar", "cos", "(\"argument reduction (hard) abs(x) < 6π/4\", \"negative argument\", \"Float64\", \"sin_kernel\")"] |
0.82 (15%) ✅ | 1.00 (1%) |
["scalar", "cosh", "(\"0 <= abs(x) < 0.00024414062f0\", \"positive argument\", \"Float32\")"] |
1.21 (15%) ❌ | 1.00 (1%) |
["scalar", "cosh", "(\"9f0 <= abs(x) < 88.72283f0\", \"positive argument\", \"Float32\")"] |
1.25 (15%) ❌ | 1.00 (1%) |
["scalar", "sincos", "(\"argument reduction (easy) abs(x) < 2.0^20π/4\", \"negative argument\", \"Float64\")"] |
0.82 (15%) ✅ | 1.00 (1%) |
["scalar", "sincos", "(\"argument reduction (easy) abs(x) < 9π/4\", \"negative argument\", \"Float64\")"] |
0.68 (15%) ✅ | 1.00 (1%) |
["scalar", "tanh", "(\"very small\", \"positive argument\", \"Float64\")"] |
0.70 (15%) ✅ | 1.00 (1%) |
["shootout", "mandelbrot"] |
1.00 (15%) | 1.09 (1%) ❌ |
["simd", "(\"conditional_loop!\", \"Int64\", 4096)"] |
0.80 (20%) ✅ | 1.00 (1%) |
["simd", "(\"local_arrays\", \"Float32\", 4095)"] |
1.21 (20%) ❌ | 1.01 (1%) ❌ |
["simd", "(\"local_arrays\", \"Float32\", 4096)"] |
1.20 (20%) ❌ | 1.01 (1%) ❌ |
["simd", "(\"local_arrays\", \"Int32\", 4095)"] |
1.17 (20%) | 1.01 (1%) ❌ |
["simd", "(\"local_arrays\", \"Int32\", 4096)"] |
1.17 (20%) | 1.01 (1%) ❌ |
["simd", "(\"sum_reduce\", \"Int64\", 4095)"] |
0.73 (20%) ✅ | 1.00 (1%) |
["simd", "(\"sum_reduce\", \"Int64\", 4096)"] |
0.74 (20%) ✅ | 1.00 (1%) |
["sparse", "matmul", "(\"At_mul_B!\", \"dense 40x4000, sparse 40x40 -> dense 4000x40\")"] |
0.58 (30%) ✅ | 1.00 (1%) |
["tuple", "reduction", "(\"sum\", (8,))"] |
1.20 (15%) ❌ | 1.00 (1%) |
["tuple", "reduction", "(\"sumabs\", (2, 2))"] |
0.82 (15%) ✅ | 1.00 (1%) |
["union", "array", "(\"perf_sum\", Complex{Float64}, true)"] |
1.28 (15%) ❌ | 1.00 (1%) |
["union", "array", "(\"skipmissing\", sum, Int8, false)"] |
0.79 (15%) ✅ | 1.00 (1%) |
Here's a list of all the benchmark groups executed by this job:
["array", "accumulate"]
["array", "any/all"]
["array", "bool"]
["array", "cat"]
["array", "comprehension"]
["array", "convert"]
["array", "equality"]
["array", "growth"]
["array", "index"]
["array", "reductions"]
["array", "reverse"]
["array", "setindex!"]
["array", "subarray"]
["broadcast", "dotop"]
["broadcast", "fusion"]
["broadcast", "mix_scalar_tuple"]
["broadcast", "sparse"]
["broadcast", "typeargs"]
["collection", "deletion"]
["collection", "initialization"]
["collection", "iteration"]
["collection", "optimizations"]
["collection", "queries & updates"]
["collection", "set operations"]
["dates", "accessor"]
["dates", "arithmetic"]
["dates", "construction"]
["dates", "conversion"]
["dates", "parse"]
["dates", "query"]
["dates", "string"]
["find", "findall"]
["find", "findnext"]
["find", "findprev"]
["io", "read"]
["io", "serialization"]
["linalg", "arithmetic"]
["linalg", "blas"]
["linalg", "factorization"]
["micro"]
["misc", "afoldl"]
["misc", "bitshift"]
["misc", "julia"]
["misc", "parse"]
["misc", "repeat"]
["misc", "splatting"]
["parallel", "remotecall"]
["problem", "chaosgame"]
["problem", "fem"]
["problem", "go"]
["problem", "grigoriadis khachiyan"]
["problem", "imdb"]
["problem", "json"]
["problem", "laplacian"]
["problem", "monte carlo"]
["problem", "raytrace"]
["problem", "seismic"]
["problem", "simplex"]
["problem", "spellcheck"]
["problem", "stockcorr"]
["problem", "ziggurat"]
["random", "collections"]
["random", "randstring"]
["random", "ranges"]
["random", "sequences"]
["random", "types"]
["scalar", "acos"]
["scalar", "acosh"]
["scalar", "arithmetic"]
["scalar", "asin"]
["scalar", "asinh"]
["scalar", "atan"]
["scalar", "atan2"]
["scalar", "atanh"]
["scalar", "cbrt"]
["scalar", "cos"]
["scalar", "cosh"]
["scalar", "exp2"]
["scalar", "expm1"]
["scalar", "fastmath"]
["scalar", "floatexp"]
["scalar", "intfuncs"]
["scalar", "iteration"]
["scalar", "mod2pi"]
["scalar", "predicate"]
["scalar", "rem_pio2"]
["scalar", "sin"]
["scalar", "sincos"]
["scalar", "sinh"]
["scalar", "tan"]
["scalar", "tanh"]
["shootout"]
["simd"]
["sort", "insertionsort"]
["sort", "issorted"]
["sort", "mergesort"]
["sort", "quicksort"]
["sparse", "arithmetic"]
["sparse", "constructors"]
["sparse", "index"]
["sparse", "matmul"]
["sparse", "transpose"]
["string", "findfirst"]
["string"]
["string", "readuntil"]
["tuple", "index"]
["tuple", "linear algebra"]
["tuple", "reduction"]
["union", "array"]
Julia Version 0.7.0-beta.17
Commit 394bc4a (2018-06-26 00:47 UTC)
Platform Info:
OS: Linux (x86_64-linux-gnu)
Ubuntu 14.04.4 LTS
uname: Linux 3.13.0-85-generic #129-Ubuntu SMP Thu Mar 17 20:50:15 UTC 2016 x86_64 x86_64
CPU: Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.50GHz:
speed user nice sys idle irq
#1 3501 MHz 17468525 s 259 s 2710394 s 759504134 s 5 s
#2 3501 MHz 89068961 s 0 s 1408786 s 690803389 s 5 s
#3 3501 MHz 12796282 s 2389 s 1514259 s 767079012 s 11 s
#4 3501 MHz 12393921 s 4 s 1153226 s 768213174 s 4 s
Memory: 31.383651733398438 GB (5150.02734375 MB free)
Uptime: 7.821e6 sec
Load Avg: 1.01220703125 1.02001953125 1.04541015625
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-6.0.0 (ORCJIT, haswell)
Julia Version 0.7.0-beta.12
Commit c446444 (2018-06-25 19:22 UTC)
Platform Info:
OS: Linux (x86_64-linux-gnu)
Ubuntu 14.04.4 LTS
uname: Linux 3.13.0-85-generic #129-Ubuntu SMP Thu Mar 17 20:50:15 UTC 2016 x86_64 x86_64
CPU: Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.50GHz:
speed user nice sys idle irq
#1 3501 MHz 17589068 s 259 s 2722661 s 760460381 s 5 s
#2 3501 MHz 90064510 s 0 s 1419917 s 690889980 s 5 s
#3 3501 MHz 12939508 s 2389 s 1523408 s 768019589 s 11 s
#4 3501 MHz 12511351 s 4 s 1161540 s 769180513 s 4 s
Memory: 31.383651733398438 GB (5024.59375 MB free)
Uptime: 7.831939e6 sec
Load Avg: 1.0029296875 1.0146484375 1.04541015625
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-6.0.0 (ORCJIT, haswell)