-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
596 lines (535 loc) · 31.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
import os
import time
import math
import cv2
import torch
from random import randint, random, choice
from lpipsPyTorch import lpips
from utils.loss_utils import l1_loss, ssim
from gaussian_renderer import render
from gaussian_renderer import network_gui
import sys
from scene import Scene, GaussianModel
from utils.general_utils import safe_state
import uuid
from tqdm import tqdm
from utils.image_utils import psnr
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
def training(
dataset, opt, pipe, testing_iterations, test_interval,
saving_iterations, checkpoint_iterations, checkpoint, debug_from,
ms_train=False, ms_train_max_scale=7,
filter_small=False, prune_small=False, preserve_large=False,
multi_occ=False, multi_dc=False, grow_large=False, insert_large=False,
ms_test_scales=None
):
max_reso_pow = ms_train_max_scale
# max_reso_pow = 5
# max_reso_pow = 1
train_reso_scales = [2**i for i in range(max_reso_pow + 1)] # 1~128
# test_reso_scales = train_reso_scales + [(2**i + 2**(i+1)) / 2 for i in range(max_reso_pow)] # 1~128, include half scales
test_reso_scales = train_reso_scales # without half scales
if ms_test_scales is not None:
test_reso_scales = ms_test_scales
else:
test_reso_scales = sorted(test_reso_scales)
full_reso_scales = sorted(list(set(train_reso_scales + test_reso_scales)))
print('train_reso_scales', train_reso_scales)
print('test_reso_scales', test_reso_scales)
print('full_reso_scales', full_reso_scales)
ms_from_iter = 1
# ms_from_iter = 5000
# ms_from_iter = 15000
first_iter = 0
last_reset_opacity_iter = None
tb_writer = prepare_output_and_logger(dataset)
gaussians = GaussianModel(dataset.sh_degree, reso_lvls=len(train_reso_scales), multi_occ=multi_occ, multi_dc=multi_dc)
scene = Scene(dataset, gaussians, resolution_scales=full_reso_scales)
gaussians.training_setup(opt)
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
if insert_large:
# increase reso at these iterations, starting from 1 (2x)
# inc_reso_at = torch.tensor([5000 + 1000 * (i + 1) for i in range(len(train_reso_scales)-1)])
# inc_reso_at = torch.tensor([1000 * (i + 1) for i in range(len(train_reso_scales)-1)])
# inc_reso_idx = torch.tensor([(i + 1) for i in range(len(train_reso_scales)-1)])
# inc_reso_at = torch.tensor([990])
# inc_reso_idx = torch.tensor([4])
# inc_reso_at = torch.tensor([940, 950, 960, 970, 980, 990])
# inc_reso_idx = torch.tensor([2, 3, 4, 5, 6, 7])
# inc_reso_at = torch.tensor([5000 - 20, 5000 - 30, 5000 - 10])
base_iter = 1000
# inc_reso_at = torch.tensor([base_iter - 30, base_iter - 20, base_iter - 10])
# inc_reso_idx_train = [[1, 2], [3, 4], [5, 6, 7]]
# inc_reso_idx_train = [[2, 3],
# [4, 5],
# [6, 7] if max_reso_pow == 7 else [6]]
if max_reso_pow == 5:
inc_reso_idx_train = [[2, 3], [4], [5]]
inc_reso_idx = torch.tensor([2, 4])
inc_reso_at = torch.tensor([base_iter + 10, base_iter + 20])
elif max_reso_pow == 6:
inc_reso_idx_train = [[2, 3], [4, 5], [6]]
inc_reso_idx = torch.tensor([2, 4, 6])
inc_reso_at = torch.tensor([base_iter + 10, base_iter + 20, base_iter + 30])
elif max_reso_pow == 7:
inc_reso_idx_train = [[2, 3], [4, 5], [6, 7]]
inc_reso_idx = torch.tensor([2, 4, 6])
inc_reso_at = torch.tensor([base_iter + 10, base_iter + 20, base_iter + 30])
else:
raise NotImplementedError
viewpoint_stack = None
ema_loss_for_log = 0.0
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
first_iter += 1
reso_idx = 0
reso_iterations = [0 for _ in range(len(train_reso_scales))] # the number of iterations trained on each reso
for iteration in range(first_iter, opt.iterations + 1):
# if iteration < opt.densify_until_iter + 10000:
# fade_size = 0
# else:
# fade_size = 1.0
fade_size = 0
filter_large = (grow_large or insert_large)
if network_gui.conn == None:
network_gui.try_connect()
while network_gui.conn != None:
try:
net_image_bytes = None
custom_cam, do_training, pipe.convert_SHs_python, pipe.compute_cov3D_python, keep_alive, scaling_modifer = network_gui.receive()
if custom_cam != None:
net_image = render(custom_cam, gaussians, pipe, background, scaling_modifer,
filter_small=filter_small, filter_large=filter_large, fade_size=fade_size)["render"]
net_image_bytes = memoryview((torch.clamp(net_image, min=0, max=1.0) * 255).byte().permute(1, 2, 0).contiguous().cpu().numpy())
network_gui.send(net_image_bytes, dataset.source_path)
if do_training and ((iteration < int(opt.iterations)) or not keep_alive):
break
except Exception as e:
network_gui.conn = None
iter_start.record()
gaussians.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 1000 == 0:
gaussians.oneupSHdegree()
# Pick a random Camera
if not viewpoint_stack:
if ms_train and iteration >= ms_from_iter:
# if ms_train and iteration > opt.densify_until_iter:
# if ms_train and iteration > 5000:
# if ms_train:
# resolution_scale = train_reso_scales[randint(0, len(train_reso_scales)-1)]
# half the chance of getting the highest resolution
if random() < 0.75:
reso_idx = 0
else:
if insert_large:
# reso_idx_counter = 0
# for iter in inc_reso_at:
# if iteration > iter:
# reso_idx_counter += 1
# max_cur_reso_idx = 0 if reso_idx_counter == 0 else inc_reso_idx[reso_idx_counter-1]
# reso_idx = randint(0, max_cur_reso_idx)
reso_idx_mask = iteration > inc_reso_at
reso_idx_mask_list = torch.arange(0, len(inc_reso_at))[reso_idx_mask]
reso_idx_list = [0]
for idx in reso_idx_mask_list:
reso_idx_list += inc_reso_idx_train[idx]
# reso_idx_list = inc_reso_idx[reso_idx_mask].tolist() + [0]
# reso_idx = choice(reso_idx_list)
# choose the one of the least trained resolution
reso_iterations_list = [reso_iterations[idx] for idx in reso_idx_list]
min_reso_iterations = min(reso_iterations_list)
reso_idx_list = [reso_idx_list[i] for i in range(len(reso_idx_list)) if reso_iterations_list[i] == min_reso_iterations]
reso_idx = choice(reso_idx_list)
# if reso_idx_mask.sum() > 0:
# print("choosing reso idx:", reso_idx_list, reso_idx)
else:
reso_idx = randint(0, len(train_reso_scales)-1)
else:
reso_idx = 0 # use the highest resolution only
resolution_scale = train_reso_scales[reso_idx]
viewpoint_stack = scene.getTrainCameras(resolution_scale).copy()
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
reso_iterations[reso_idx] += 1
# if iteration == opt.densify_until_iter:
if iteration == ms_from_iter:
gaussians.start_ms_lr()
# Render
if (iteration - 1) == debug_from:
pipe.debug = True
render_pkg = render(viewpoint_cam, gaussians, pipe, background, filter_small=filter_small,
filter_large=filter_large, fade_size=fade_size)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
pixel_sizes = render_pkg["pixel_sizes"]
# Loss
gt_image = viewpoint_cam.original_image.cuda()
Ll1 = l1_loss(image, gt_image)
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image))
if ms_train:
# loss_multiplier = 1 / (reso_idx * 2 + 1)
loss_multiplier = 1 if reso_idx == 0 else 0.1
loss *= loss_multiplier
loss.backward()
iter_end.record()
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}"})
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
# Log and save
training_report(tb_writer, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end),
train_reso_scales, test_reso_scales,
testing_iterations, test_interval, opt.iterations, scene, render, (pipe, background),
filter_small, filter_large, fade_size)
if (iteration in saving_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration)
# if iteration > opt.densify_from_iter:
if preserve_large and iteration > opt.densify_until_iter:
if resolution_scale == train_reso_scales[-1]:
gaussians.update_base_gaussian_mask(visibility_filter)
# Densification
if iteration >= 250 and (last_reset_opacity_iter is None or iteration - last_reset_opacity_iter > 250):
gaussians.update_pixel_sizes(visibility_filter, pixel_sizes, reso_idx, iteration)
if iteration < opt.densify_until_iter:
# Keep track of max radii in image-space for pruning
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter, reso_lvl=reso_idx)
# if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
if iteration > opt.densify_from_iter and reso_iterations[reso_idx] % opt.densification_interval == 0:
# and resolution_scale == train_reso_scales[0]: # densify only at the highest resolution
if reso_idx == 0:
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
gaussians.densify_and_prune(opt.densify_grad_threshold, 0.005, scene.cameras_extent, size_threshold)
else:
if grow_large:
gaussians.grow_large_gaussians(opt.densify_grad_threshold, reso_idx)
if iteration % opt.opacity_reset_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
last_reset_opacity_iter = iteration
gaussians.reset_opacity()
if prune_small and iteration > opt.densify_from_iter and iteration % 1000 == 0:
gaussians.prune_small_points()
if insert_large and iteration in inc_reso_at:
torch.cuda.synchronize()
insert_time = time.time()
# base_reso_idx = inc_reso_at.index(iteration)
base_reso_idx = 0 # always create from the highest resolution
# base_reso_idx = max(inc_reso_at.index(iteration) - 2, 0) # 3 lvls lower than the target reso
# next_reso_idx = inc_reso_at.index(iteration) + 1
# next_reso_idx = 4
next_reso_idx = inc_reso_idx[inc_reso_at.tolist().index(iteration)]
base_reso_cams = scene.getTrainCameras(train_reso_scales[base_reso_idx]).copy()
next_reso_cams = scene.getTrainCameras(train_reso_scales[next_reso_idx]).copy()
base_vis_filter_list = []
next_vis_filter_list = []
for cam in base_reso_cams:
render_out = render(cam, gaussians, pipe, background, filter_small=filter_small,
filter_large=filter_large, fade_size=fade_size)
vis_filter = render_out["visibility_filter"]
base_vis_filter_list.append(vis_filter)
pixel_size_threshold = 1
min_pixel_sizes = torch.ones_like(gaussians.min_pixel_sizes) * pixel_size_threshold
for i, cam in enumerate(next_reso_cams):
render_out = render(cam, gaussians, pipe, background, filter_small=filter_small,
filter_large=filter_large, fade_size=fade_size)
vis_filter = render_out["visibility_filter"]
next_vis_filter_list.append(vis_filter)
min_pixel_sizes = torch.where(
torch.logical_and(render_out["pixel_sizes"] > 0, base_vis_filter_list[i]),
torch.minimum(render_out["pixel_sizes"], min_pixel_sizes),
min_pixel_sizes
)
# compare the visibility filter of the same camera at each resolution
all_diff_vis_filter = torch.zeros_like(base_vis_filter_list[0])
ratios_sum = torch.tensor(0, dtype=torch.float32, device=all_diff_vis_filter.device)
for i in range(len(base_vis_filter_list)):
diff_vis_filter = torch.logical_and(base_vis_filter_list[i], torch.logical_not(next_vis_filter_list[i]))
all_diff_vis_filter = torch.logical_or(all_diff_vis_filter, diff_vis_filter)
ratios_sum += torch.mean(diff_vis_filter.float())
# print(f"avg ratio: {ratios_sum/len(base_vis_filter_list):.3f} of {len(base_vis_filter_list)}, total ratio: {torch.mean(all_diff_vis_filter.float()):.3f}")
# all_diff_vis_filter = min_pixel_sizes < pixel_size_threshold
all_diff_vis_filter = torch.logical_and(
min_pixel_sizes < pixel_size_threshold,
gaussians.target_reso_lvl == base_reso_idx
)
print(f"reso {next_reso_idx} diff_vis_filter: {torch.mean(all_diff_vis_filter.float()):.3f}")
# # show chosen points
# prune_mask = torch.logical_not(all_diff_vis_filter)
# gaussians.prune_points(prune_mask)
# # visualize all chosen points
# for cam in base_reso_cams:
# render_out = render(cam, gaussians, pipe, background, filter_small=filter_small,
# filter_large=filter_large, fade_size=fade_size)
# image = render_out["render"]
# image = torch.permute(image, (1, 2, 0)) # HWC
# image = image.cpu().numpy()
# image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# cv2.imshow("image", image)
# key = cv2.waitKey(0)
# if key == ord('q'):
# break
# aggregate into voxels
gaussians.insert_large_gaussians(all_diff_vis_filter, min_pixel_sizes, next_reso_idx, scene.cameras_extent)
# render once to update the pixel sizes
for cam in next_reso_cams:
render_out = render(cam, gaussians, pipe, background, filter_small=filter_small,
filter_large=filter_large, fade_size=fade_size)
vis_filter, pixel_sizes = render_out["visibility_filter"], render_out["pixel_sizes"]
gaussians.update_pixel_sizes(vis_filter, pixel_sizes, next_reso_idx, iteration)
# for debug
lvl_mask = gaussians.target_reso_lvl == next_reso_idx
vis_lvl_mask = torch.logical_and(vis_filter, lvl_mask)
px_lvl_mask = torch.logical_and(pixel_sizes > 0, lvl_mask)
# # show inserted points
# # prune_mask = gaussians.target_reso_lvl != next_reso_idx
# # gaussians.prune_points(prune_mask)
# for cam in next_reso_cams:
# render_out = render(cam, gaussians, pipe, background, filter_small=filter_small,
# filter_large=filter_large, fade_size=fade_size)
# vis_filter, pixel_sizes = render_out["visibility_filter"], render_out["pixel_sizes"]
# pixel_sizes = pixel_sizes[vis_filter]
#
# image = render_out["render"]
# image = torch.permute(image, (1, 2, 0)) # HWC
# image = image.cpu().numpy()
# # enlarge
# enlarge_scale = 2 ** next_reso_idx
# image = cv2.resize(image, (image.shape[1] * enlarge_scale, image.shape[0] * enlarge_scale), interpolation=cv2.INTER_AREA)
# image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# cv2.imshow("image", image)
# cv2.setWindowTitle("image", f"reso {next_reso_idx}")
# key = cv2.waitKey(0)
# if key == ord('q'):
# break
#
# # show original reso
# for cam in base_reso_cams:
# render_out = render(cam, gaussians, pipe, background, filter_small=filter_small,
# filter_large=filter_large, fade_size=fade_size)
# vis_filter, pixel_sizes = render_out["visibility_filter"], render_out["pixel_sizes"]
# pixel_sizes = pixel_sizes[vis_filter]
#
# image = render_out["render"]
# image = torch.permute(image, (1, 2, 0)) # HWC
# image = image.cpu().numpy()
# image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# cv2.imshow("image", image)
# cv2.setWindowTitle("image", f"reso {base_reso_idx}")
# key = cv2.waitKey(0)
# if key == ord('q'):
# break
torch.cuda.synchronize()
print(f"Insert large gaussians finished: {time.time() - insert_time:.3f}s")
# # Add large gaussians
# if iteration < 15000:
# if iteration > 500 and iteration % 100 == 0:
# added_new = gaussians.add_large_gaussian(viewpoint_cam, render_pkg)
# #
# # if added_new and iteration >= 1000:
# # last_image = image.clone()
# # old_pixel_size = render_pkg["acc_pixel_size"] / 3.0
# # old_pixel_size = torch.tile(old_pixel_size, (3, 1, 1))
# # old_depth = render_pkg["depth"]
# # render_pkg = render(viewpoint_cam, gaussians, pipe, background, fade_size=fade_size)
# # new_image = render_pkg["render"]
# # new_depth = render_pkg["depth"]
# # max_depth = torch.maximum(torch.max(old_depth), torch.max(new_depth))
# # old_depth = old_depth / max_depth
# # new_depth = new_depth / max_depth
# # old_depth = torch.tile(old_depth, (3, 1, 1))
# # new_depth = torch.tile(new_depth, (3, 1, 1))
# #
# # image = torch.cat((last_image, new_image, old_pixel_size, old_depth, new_depth), dim=-1)
# # image = image.cpu().numpy()
# # image = image.transpose(1, 2, 0)
# # image = cv2.resize(image, (image.shape[1] * resolution_scale // 2, image.shape[0] * resolution_scale // 2), interpolation=cv2.INTER_NEAREST)
# # cv2.imshow("image", image)
# # cv2.waitKey(0)
# Optimizer step
if iteration < opt.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
if (iteration in checkpoint_iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")
def prepare_output_and_logger(args):
if not args.model_path:
if os.getenv('OAR_JOB_ID'):
unique_str=os.getenv('OAR_JOB_ID')
else:
unique_str = str(uuid.uuid4())
args.model_path = os.path.join("./output/", unique_str[0:10])
# Set up output folder
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok = True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
# Create Tensorboard writer
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.model_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(tb_writer, iteration, Ll1, loss, l1_loss, elapsed, train_reso_scales, test_reso_scales,
testing_iterations, test_interval, total_iterations, scene : Scene, renderFunc, renderArgs,
filter_small=False, filter_large=False, fade_size=0):
if tb_writer:
tb_writer.add_scalar('train_loss_patches/l1_loss', Ll1.item(), iteration)
tb_writer.add_scalar('train_loss_patches/total_loss', loss.item(), iteration)
tb_writer.add_scalar('iter_time', elapsed, iteration)
# Report test and samples of training set
if iteration in testing_iterations or (iteration > 0 and iteration % test_interval == 0):
if iteration == total_iterations:
eval_ssim = True
eval_lpips = True
else:
eval_ssim = False
eval_lpips = False
torch.cuda.empty_cache()
validation_configs = []
for reso_scale in test_reso_scales:
validation_configs.append({
'name': 'test', 'cameras': scene.getTestCameras(reso_scale), 'scale': reso_scale
})
for reso_scale in train_reso_scales:
validation_configs.append({
'name': 'train', 'cameras': [scene.getTrainCameras(reso_scale)[idx % len(scene.getTrainCameras())] for idx in range(5, 30, 5)],
'scale': reso_scale
})
# validation_configs = ({'name': 'test', 'cameras' : scene.getTestCameras(reso_scale)},
# {'name': 'train', 'cameras' : [scene.getTrainCameras(reso_scale)[idx % len(scene.getTrainCameras())] for idx in range(5, 30, 5)]})
output_str = f"[ITER {iteration}] Evaluating:"
# output_str += f" {torch.sum(scene.gaussians.target_reso_lvl > 0)} large gs "
for config in validation_configs:
reso_scale = config['scale']
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
ssim_test = 0.0
lpips_test = 0.0
render_time = 0.0
for idx, viewpoint in enumerate(config['cameras']):
torch.cuda.synchronize()
start_time = time.time()
render_out = renderFunc(viewpoint, scene.gaussians, *renderArgs,
filter_small=filter_small, filter_large=filter_large, fade_size=fade_size)
image = torch.clamp(render_out["render"], 0.0, 1.0)
torch.cuda.synchronize()
render_time += time.time() - start_time
px = render_out["pixel_sizes"]
max_px = scene.gaussians.max_pixel_sizes
lvl = scene.gaussians.target_reso_lvl
valid_mask = torch.logical_and(px > 0, lvl == 4)
rel_px = (px / max_px)[valid_mask]
vis = render_out["visibility_filter"][valid_mask]
# print(torch.min(rel_px), torch.median(rel_px), torch.max(rel_px))
gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0)
if tb_writer and (idx < 5):
tb_writer.add_images(
f"{config['name']}_s{reso_scale:.1f}_view_{viewpoint.image_name}/render",
image[None], global_step=iteration)
if iteration == testing_iterations[0]:
tb_writer.add_images(
f"{config['name']}_s{reso_scale:.1f}_view_{viewpoint.image_name}/ground_truth",
gt_image[None], global_step=iteration)
l1_test += l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
if eval_ssim:
ssim_test += ssim(image, gt_image).mean().double()
if eval_lpips:
try:
lpips_test += lpips(image, gt_image).mean().double()
except:
pass
# print(f"LPIPS failed at {image.shape}")
psnr_test /= len(config['cameras'])
if eval_ssim:
ssim_test /= len(config['cameras'])
if eval_lpips:
lpips_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
render_time /= len(config['cameras'])
# print(f"\n[ITER {iteration}] Evaluating {config['name']} s{reso_scale:.1f}: L1 {l1_test} PSNR {psnr_test}")
output_str += f"s{reso_scale:.1f} PSNR {psnr_test:.2f} | "
if tb_writer:
tb_writer.add_scalar(f"{config['name']}/s{reso_scale:.1f}_loss_viewpoint - l1_loss", l1_test, iteration)
tb_writer.add_scalar(f"{config['name']}/s{reso_scale:.1f}_loss_viewpoint - psnr", psnr_test, iteration)
if eval_ssim:
tb_writer.add_scalar(f"{config['name']}/s{reso_scale:.1f}_loss_viewpoint - ssim", ssim_test, iteration)
if eval_lpips:
tb_writer.add_scalar(f"{config['name']}/s{reso_scale:.1f}_loss_viewpoint - lpips", lpips_test, iteration)
tb_writer.add_scalar(f"{config['name']}/s{reso_scale:.1f}_loss_viewpoint - render_time", render_time, iteration)
print(output_str)
if iteration % 1000 == 0:
if tb_writer:
tb_writer.add_histogram("scene/opacity_histogram", scene.gaussians.get_opacity, iteration)
tb_writer.add_scalar('total_points', scene.gaussians.get_xyz.shape[0], iteration)
tb_writer.add_histogram("scene/pixel_sizes_histogram", torch.clip(scene.gaussians.max_pixel_sizes, max=10), iteration)
for i in range(scene.gaussians.get_occ_multiplier.shape[1]):
tb_writer.add_histogram(f"scene/occ_multiplier_histogram_{i}", scene.gaussians.get_occ_multiplier[:, i], iteration)
torch.cuda.empty_cache()
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[7_000, 30_000])
parser.add_argument("--test_interval", type=int, default=5_000)
parser.add_argument("--save_iterations", nargs="+", type=int, default=[1_000, 7_000, 30_000])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--start_checkpoint", type=str, default = None)
parser.add_argument('--ms_train', action='store_true', default=False, help='use multi-scale training')
parser.add_argument("--ms_train_max_scale", type=int, default=7)
parser.add_argument('--filter_small', action='store_true', default=False, help='filter small gaussians based on pixel size')
parser.add_argument('--prune_small', action='store_true', default=False, help='prune small gaussians based on pixel size')
parser.add_argument('--preserve_large', action='store_true', default=False, help='preserve large gaussians')
parser.add_argument('--multi_occ', action='store_true', default=False, help='use multiple occ multiplier')
parser.add_argument('--multi_dc', action='store_true', default=False, help='use multiple dc features delta')
parser.add_argument('--grow_large', action='store_true', default=False, help='grow large gaussians')
parser.add_argument('--insert_large', action='store_true', default=False, help='insert large gaussians')
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
print("Optimizing " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
# Start GUI server, configure and run training
network_gui.init(args.ip, args.port)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
training(lp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.test_interval,
args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from,
ms_train=args.ms_train, ms_train_max_scale=args.ms_train_max_scale, filter_small=args.filter_small, prune_small=args.prune_small,
preserve_large=args.preserve_large, multi_occ=args.multi_occ, multi_dc=args.multi_dc,
grow_large=args.grow_large, insert_large=args.insert_large)
# All done
print("\nTraining complete.")