diff --git a/docs/_posts/Ahmetemintek/2022-11-18-kegg_disease_mapper_en.md b/docs/_posts/Ahmetemintek/2022-11-18-kegg_disease_mapper_en.md
new file mode 100644
index 00000000000000..3c98fb503b787f
--- /dev/null
+++ b/docs/_posts/Ahmetemintek/2022-11-18-kegg_disease_mapper_en.md
@@ -0,0 +1,158 @@
+---
+layout: model
+title: Mapping Diseases from the KEGG Database to Their Corresponding Categories, Descriptions and Clinical Vocabularies
+author: John Snow Labs
+name: kegg_disease_mapper
+date: 2022-11-18
+tags: [disease, category, description, icd10, icd11, mesh, brite, en, clinical, chunk_mapper, licensed]
+task: Chunk Mapping
+language: en
+edition: Healthcare NLP 4.2.2
+spark_version: 3.0
+supported: true
+article_header:
+ type: cover
+use_language_switcher: "Python-Scala-Java"
+---
+
+## Description
+
+This pretrained model maps diseases with their corresponding `category`, `description`, `icd10_code`, `icd11_code`, `mesh_code`, and hierarchical `brite_code`. This model was trained with the data from the KEGG database.
+
+## Predicted Entities
+
+`category`, `description`, `icd10_code`, `icd11_code`, `mesh_code`, `brite_code`
+
+{:.btn-box}
+
+[Open in Colab](https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/Certification_Trainings/Healthcare/26.Chunk_Mapping.ipynb){:.button.button-orange.button-orange-trans.co.button-icon}
+[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/clinical/models/kegg_disease_mapper_en_4.2.2_3.0_1668794743905.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
+
+## How to use
+
+
+
+
+{% include programmingLanguageSelectScalaPythonNLU.html %}
+```python
+document_assembler = DocumentAssembler()\
+ .setInputCol("text")\
+ .setOutputCol("document")
+
+sentence_detector = SentenceDetector()\
+ .setInputCols(["document"])\
+ .setOutputCol("sentence")
+
+tokenizer = Tokenizer()\
+ .setInputCols("sentence")\
+ .setOutputCol("token")
+
+word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")\
+ .setInputCols(["sentence", "token"])\
+ .setOutputCol("embeddings")
+
+ner = MedicalNerModel.pretrained("ner_diseases", "en", "clinical/models") \
+ .setInputCols(["sentence", "token", "embeddings"]) \
+ .setOutputCol("ner")
+
+converter = NerConverter() \
+ .setInputCols(["sentence", "token", "ner"]) \
+ .setOutputCol("ner_chunk")\
+
+chunkerMapper = ChunkMapperModel.pretrained("kegg_disease_mapper", "en", "clinical/models")\
+ .setInputCols(["ner_chunk"])\
+ .setOutputCol("mappings")\
+ .setRels(["description", "category", "icd10_code", "icd11_code", "mesh_code", "brite_code"])\
+
+pipeline = Pipeline().setStages([
+ document_assembler,
+ sentence_detector,
+ tokenizer,
+ word_embeddings,
+ ner,
+ converter,
+ chunkerMapper])
+
+
+text= "A 55-year-old female with a history of myopia, kniest dysplasia and prostate cancer. She was on glipizide , and dapagliflozin for congenital nephrogenic diabetes insipidus."
+
+data = spark.createDataFrame([[text]]).toDF("text")
+
+result = pipeline.fit(data).transform(data)
+```
+```scala
+val document_assembler = new DocumentAssembler()
+ .setInputCol("text")
+ .setOutputCol("document")
+
+val sentence_detector = new SentenceDetector()
+ .setInputCols(Array("document"))
+ .setOutputCol("sentence")
+
+val tokenizer = new Tokenizer()
+ .setInputCols("sentence")
+ .setOutputCol("token")
+
+val word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")
+ .setInputCols(Array("sentence", "token"))
+ .setOutputCol("embeddings")
+
+val ner = MedicalNerModel.pretrained("ner_diseases", "en", "clinical/models")
+ .setInputCols(Array("sentence", "token", "embeddings"))
+ .setOutputCol("ner")
+
+val converter = new NerConverter()
+ .setInputCols(Array("sentence", "token", "ner"))
+ .setOutputCol("ner_chunk")
+
+val chunkerMapper = ChunkMapperModel.pretrained("kegg_disease_mapper", "en", "clinical/models")
+ .setInputCols("ner_chunk")
+ .setOutputCol("mappings")
+ .setRels(Array("description", "category", "icd10_code", "icd11_code", "mesh_code", "brite_code"))
+
+
+val pipeline = new Pipeline().setStages(Array(
+ document_assembler,
+ sentence_detector,
+ tokenizer,
+ word_embeddings,
+ ner,
+ converter,
+ chunkerMapper))
+
+
+val text= "A 55-year-old female with a history of myopia, kniest dysplasia and prostate cancer. She was on glipizide , and dapagliflozin for congenital nephrogenic diabetes insipidus."
+
+
+val data = Seq(text).toDS.toDF("text")
+
+val result= pipeline.fit(data).transform(data)
+```
+
+
+## Results
+
+```bash
++-----------------------------------------+--------------------------------------------------+-----------------------+----------+----------+---------+-----------------------+
+| ner_chunk| description| category|icd10_code|icd11_code|mesh_code| brite_code|
++-----------------------------------------+--------------------------------------------------+-----------------------+----------+----------+---------+-----------------------+
+| myopia|Myopia is the most common ocular disorder world...| Nervous system disease| H52.1| 9D00.0| D009216| 08402,08403|
+| kniest dysplasia|Kniest dysplasia is an autosomal dominant chond...|Congenital malformation| Q77.7| LD24.3| C537207| 08402,08403|
+| prostate cancer|Prostate cancer constitutes a major health prob...| Cancer| C61| 2C82| NONE|08402,08403,08442,08441|
+|congenital nephrogenic diabetes insipidus|Nephrogenic diabetes insipidus (NDI) is charact...| Urinary system disease| N25.1| GB90.4A| D018500| 08402,08403|
++-----------------------------------------+--------------------------------------------------+-----------------------+----------+----------+---------+-----------------------+
+```
+
+{:.model-param}
+## Model Information
+
+{:.table-model}
+|---|---|
+|Model Name:|kegg_disease_mapper|
+|Compatibility:|Healthcare NLP 4.2.2+|
+|License:|Licensed|
+|Edition:|Official|
+|Input Labels:|[ner_chunk]|
+|Output Labels:|[mappings]|
+|Language:|en|
+|Size:|595.6 KB|
\ No newline at end of file
diff --git a/docs/_posts/Ahmetemintek/2022-11-21-kegg_drug_mapper_en.md b/docs/_posts/Ahmetemintek/2022-11-21-kegg_drug_mapper_en.md
new file mode 100644
index 00000000000000..519a2856f8b9e2
--- /dev/null
+++ b/docs/_posts/Ahmetemintek/2022-11-21-kegg_drug_mapper_en.md
@@ -0,0 +1,159 @@
+---
+layout: model
+title: Mapping Drugs from the KEGG Database to Their Efficacies, Molecular Weights and Corresponding Codes from Other Databases
+author: John Snow Labs
+name: kegg_drug_mapper
+date: 2022-11-21
+tags: [drug, efficacy, molecular_weight, cas, pubchem, chebi, ligandbox, nikkaji, pdbcct, chunk_mapper, clinical, en, licensed]
+task: Chunk Mapping
+language: en
+edition: Healthcare NLP 4.2.2
+spark_version: 3.0
+supported: true
+article_header:
+ type: cover
+use_language_switcher: "Python-Scala-Java"
+---
+
+## Description
+
+This pretrained model maps drugs with their corresponding `efficacy`, `molecular_weight` as well as `CAS`, `PubChem`, `ChEBI`, `LigandBox`, `NIKKAJI`, `PDB-CCD` codes. This model was trained with the data from the KEGG database.
+
+## Predicted Entities
+
+`efficacy`, `molecular_weight`, `CAS`, `PubChem`, `ChEBI`, `LigandBox`, `NIKKAJI`, `PDB-CCD`
+
+{:.btn-box}
+
+[Open in Colab](https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/Certification_Trainings/Healthcare/26.Chunk_Mapping.ipynb){:.button.button-orange.button-orange-trans.co.button-icon}
+[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/clinical/models/kegg_drug_mapper_en_4.2.2_3.0_1669069910375.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
+
+## How to use
+
+
+
+
+{% include programmingLanguageSelectScalaPythonNLU.html %}
+```python
+document_assembler = DocumentAssembler()\
+ .setInputCol("text")\
+ .setOutputCol("document")
+
+sentence_detector = SentenceDetector()\
+ .setInputCols(["document"])\
+ .setOutputCol("sentence")
+
+tokenizer = Tokenizer()\
+ .setInputCols("sentence")\
+ .setOutputCol("token")
+
+word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")\
+ .setInputCols(["sentence", "token"])\
+ .setOutputCol("embeddings")
+
+ner = MedicalNerModel.pretrained("ner_posology", "en", "clinical/models") \
+ .setInputCols(["sentence", "token", "embeddings"]) \
+ .setOutputCol("ner")
+
+converter = NerConverter() \
+ .setInputCols(["sentence", "token", "ner"]) \
+ .setOutputCol("ner_chunk")\
+
+chunkerMapper = ChunkMapperModel.pretrained("kegg_drug_mapper", "en", "clinical/models")\
+ .setInputCols(["ner_chunk"])\
+ .setOutputCol("mappings")\
+ .setRels(["efficacy", "molecular_weight", "CAS", "PubChem", "ChEBI", "LigandBox", "NIKKAJI", "PDB-CCD"])\
+
+pipeline = Pipeline().setStages([
+ document_assembler,
+ sentence_detector,
+ tokenizer,
+ word_embeddings,
+ ner,
+ converter,
+ chunkerMapper])
+
+
+text= "She is given OxyContin, folic acid, levothyroxine, Norvasc, aspirin, Neurontin"
+
+data = spark.createDataFrame([[text]]).toDF("text")
+
+result = pipeline.fit(data).transform(data)
+```
+```scala
+val document_assembler = new DocumentAssembler()
+ .setInputCol("text")
+ .setOutputCol("document")
+
+val sentence_detector = new SentenceDetector()
+ .setInputCols(Array("document"))
+ .setOutputCol("sentence")
+
+val tokenizer = new Tokenizer()
+ .setInputCols("sentence")
+ .setOutputCol("token")
+
+val word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")
+ .setInputCols(Array("sentence", "token"))
+ .setOutputCol("embeddings")
+
+val ner = MedicalNerModel.pretrained("ner_posology", "en", "clinical/models")
+ .setInputCols(Array("sentence", "token", "embeddings"))
+ .setOutputCol("ner")
+
+val converter = new NerConverter()
+ .setInputCols(Array("sentence", "token", "ner"))
+ .setOutputCol("ner_chunk")
+
+val chunkerMapper = ChunkMapperModel.pretrained("kegg_drug_mapper", "en", "clinical/models")
+ .setInputCols("ner_chunk")
+ .setOutputCol("mappings")
+ .setRels(Array(["efficacy", "molecular_weight", "CAS", "PubChem", "ChEBI", "LigandBox", "NIKKAJI", "PDB-CCD"]))
+
+
+val pipeline = new Pipeline().setStages(Array(
+ document_assembler,
+ sentence_detector,
+ tokenizer,
+ word_embeddings,
+ ner,
+ converter,
+ chunkerMapper))
+
+
+val text= "She is given OxyContin, folic acid, levothyroxine, Norvasc, aspirin, Neurontin"
+
+val data = Seq(text).toDS.toDF("text")
+
+val result= pipeline.fit(data).transform(data)
+```
+
+
+## Results
+
+```bash
++-------------+--------------------------------------------------+----------------+----------+-----------+-------+---------+---------+-------+
+| ner_chunk| efficacy|molecular_weight| CAS| PubChem| ChEBI|LigandBox| NIKKAJI|PDB-CCD|
++-------------+--------------------------------------------------+----------------+----------+-----------+-------+---------+---------+-------+
+| OxyContin| Analgesic (narcotic), Opioid receptor agonist| 351.8246| 124-90-3| 7847912.0| 7859.0| D00847|J281.239H| NONE|
+| folic acid|Anti-anemic, Hematopoietic, Supplement (folic a...| 441.3975| 59-30-3| 7847138.0|27470.0| D00070| J1.392G| FOL|
+|levothyroxine| Replenisher (thyroid hormone)| 776.87| 51-48-9|9.6024815E7|18332.0| D08125| J4.118A| T44|
+| Norvasc|Antihypertensive, Vasodilator, Calcium channel ...| 408.8759|88150-42-9|5.1091781E7| 2668.0| D07450| J33.383B| NONE|
+| aspirin|Analgesic, Anti-inflammatory, Antipyretic, Anti...| 180.1574| 50-78-2| 7847177.0|15365.0| D00109| J2.300K| AIN|
+| Neurontin| Anticonvulsant, Antiepileptic| 171.2368|60142-96-3| 7847398.0|42797.0| D00332| J39.388F| GBN|
++-------------+--------------------------------------------------+----------------+----------+-----------+-------+---------+---------+-------+
+```
+
+{:.model-param}
+## Model Information
+
+{:.table-model}
+|---|---|
+|Model Name:|kegg_drug_mapper|
+|Compatibility:|Healthcare NLP 4.2.2+|
+|License:|Licensed|
+|Edition:|Official|
+|Input Labels:|[ner_chunk]|
+|Output Labels:|[mappings]|
+|Language:|en|
+|Size:|1.0 MB|
\ No newline at end of file