diff --git a/docs/_posts/gadde5300/2024-11-13-roberta_embeddings_legal_roberta_base_en.md b/docs/_posts/gadde5300/2024-11-13-roberta_embeddings_legal_roberta_base_en.md
new file mode 100644
index 00000000000000..77ef36bb4ee436
--- /dev/null
+++ b/docs/_posts/gadde5300/2024-11-13-roberta_embeddings_legal_roberta_base_en.md
@@ -0,0 +1,109 @@
+---
+layout: model
+title: English Legal RoBERTa Embeddings (CaseLaw, Base, Cased)
+author: John Snow Labs
+name: roberta_embeddings_legal_roberta_base
+date: 2024-11-13
+tags: [roberta, embeddings, en, open_source, tensorflow]
+task: Embeddings
+language: en
+edition: Spark NLP 5.5.0
+spark_version: 3.0
+supported: true
+engine: tensorflow
+annotator: RoBertaEmbeddings
+article_header:
+ type: cover
+use_language_switcher: "Python-Scala-Java"
+---
+
+## Description
+
+Pretrained Legal RoBERTa Embeddings model, uploaded to Hugging Face, adapted and imported into Spark NLP. `legal-roberta-base` is a English model orginally trained by `saibo`.
+
+## Predicted Entities
+
+
+
+{:.btn-box}
+
+
+[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/roberta_embeddings_legal_roberta_base_en_5.5.0_3.0_1731462634993.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
+[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/roberta_embeddings_legal_roberta_base_en_5.5.0_3.0_1731462634993.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}
+
+## How to use
+
+
+
+
+{% include programmingLanguageSelectScalaPythonNLU.html %}
+```python
+documentAssembler = DocumentAssembler() \
+.setInputCol("text") \
+.setOutputCol("document")
+
+tokenizer = Tokenizer() \
+.setInputCols("document") \
+.setOutputCol("token")
+
+embeddings = RoBertaEmbeddings.pretrained("roberta_embeddings_legal_roberta_base","en") \
+.setInputCols(["document", "token"]) \
+.setOutputCol("embeddings")
+
+pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])
+
+data = spark.createDataFrame([["I love Spark NLP"]]).toDF("text")
+
+result = pipeline.fit(data).transform(data)
+```
+```scala
+val documentAssembler = new DocumentAssembler()
+.setInputCol("text")
+.setOutputCol("document")
+
+val tokenizer = new Tokenizer()
+.setInputCols(Array("document"))
+.setOutputCol("token")
+
+val embeddings = RoBertaEmbeddings.pretrained("roberta_embeddings_legal_roberta_base","en")
+.setInputCols(Array("document", "token"))
+.setOutputCol("embeddings")
+
+val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))
+
+val data = Seq("I love Spark NLP").toDF("text")
+
+val result = pipeline.fit(data).transform(data)
+```
+
+{:.nlu-block}
+```python
+import nlu
+nlu.load("en.embed.legal_roberta_base").predict("""I love Spark NLP""")
+```
+
+
+{:.model-param}
+## Model Information
+
+{:.table-model}
+|---|---|
+|Model Name:|roberta_embeddings_legal_roberta_base|
+|Compatibility:|Spark NLP 5.5.0+|
+|License:|Open Source|
+|Edition:|Official|
+|Input Labels:|[sentence, token]|
+|Output Labels:|[embeddings]|
+|Language:|en|
+|Size:|468.9 MB|
+|Case sensitive:|true|
+
+## Benchmarking
+
+```bash
+- https://huggingface.co/saibo/legal-roberta-base
+- https://www.kaggle.com/uspto/patent-litigations
+- https://case.law/
+- https://www.kaggle.com/bigquery/patents
+- https://www.kaggle.com/sohier/beyond-queries-exploring-the-bigquery-api
+```
\ No newline at end of file