diff --git a/docs/en/utility_helper_modules.md b/docs/en/utility_helper_modules.md index 76e586f224c71c..879612fde3f9cc 100644 --- a/docs/en/utility_helper_modules.md +++ b/docs/en/utility_helper_modules.md @@ -351,9 +351,9 @@ preannotations = pre_annotations) ## Deidentification Module -Spark NLP for Healthcare provides functionality to apply Deidentification using easy-to-use module named `deid`.
+Spark NLP for Healthcare provides functionality to apply Deidentification using easy-to-use module named `Deid`.
-The `deid` module is a tool for deidentifying Personal Health Information from data in a file path. It can be used with custom SparkNLP NER pipelines or without any pipeline specified. +The `Deid` module is a tool for deidentifying Personal Health Information from data in a file path. It can be used with custom SparkNLP NER pipelines or without any pipeline specified. It returns the deidentification results as a pyspark dataframe as well as a `csv` or `json file`. The module also includes functionality for applying Structured Deidentification task to data from a file path.
@@ -363,9 +363,9 @@ The function, `deidentify()`, can be used with a custom pipeline or without defi ### Apply Deidentification With a Custom Pipeline ```python -from sparknlp_jsl import deid +from sparknlp_jsl import Deid -deid_implementor= deid( +deid_implementor= Deid( # required: Spark session with spark-nlp-jsl jar spark ) @@ -447,7 +447,8 @@ token="token", #unnormalized_date=True #optional: The unnormalized mode. Default is "mask". -#unnormalized_mode="obfuscate") +#unnormalized_mode="obfuscate" +) ``` @@ -465,9 +466,9 @@ token="token", ```python -from sparknlp_jsl import deid +from sparknlp_jsl import Deid -deid_implementor= deid( +deid_implementor= Deid( # required: Spark session with spark-nlp-jsl jar spark ) @@ -524,9 +525,9 @@ masking_policy="entity_labels", ```python -from sparknlp_jsl import deid +from sparknlp_jsl import Deid -deid_implementor= deid( +deid_implementor= Deid( # required: Spark session with spark-nlp-jsl jar spark )