-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect_density.py
executable file
·216 lines (199 loc) · 11.3 KB
/
detect_density.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import argparse
import time
from pathlib import Path
import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random
from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized
import json
import numpy as np
import matplotlib.pyplot as plt
def detect(save_img=False):
source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
# Directories
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Initialize
set_logging()
device = select_device(opt.device)
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
stride = int(model.stride.max()) # model stride
imgsz = check_img_size(imgsz, s=stride) # check img_size
print("detect image size == >",imgsz)
if half:
model.half() # to FP16
# Set Dataloader
vid_path, vid_writer = None, None
save_img = True
dataset = LoadImages(source, img_size=imgsz, stride=stride)
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
# colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
# 'fake','negative','others','positive'
colors = [[200,0,0],[0,200,200],[0,200,0],[0,0,200]]
# Run inference
if device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
t0 = time.time()
for path, img, im0s, vid_cap in dataset:
imagePath = path.split('/')[-1]
print('image path=>',imagePath)
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = time_synchronized()
(pred,_), density_map_out = model(img, augment=opt.augment)
print('density_map_out => ', density_map_out.shape)
################看数据的大小#################################################
if density_map_out.shape[1] > 1: # 多类别
fileName = imagePath.replace('.png', '')
source_img = np.copy(img.cpu())
density_img0 = np.copy(density_map_out[0][0].cpu())
density_img1 = np.copy(density_map_out[0][1].cpu())
density_img2 = np.copy(density_map_out[0][2].cpu())
density_img3 = np.copy(density_map_out[0][3].cpu())
# 密度图叠加到一起
density_overlap = np.ones([160,160])
density_overlap[0:80,0:80] = density_img0
density_overlap[0:80,80:160] = density_img1
density_overlap[80:160,0:80] = density_img2
density_overlap[80:160,80:160] = density_img3
plt.imsave(f'all_{fileName}.png', density_overlap)
print(source_img.shape, density_img0.shape, density_img1.shape, density_img2.shape, density_img3.shape)
print('----> ', f'./detect_density_out/{fileName}_source_img.png')
plt.imsave(f'./detect_density_out/{fileName}_source_img.png', source_img[0].transpose(1,2,0))
plt.imsave(f'./detect_density_out/{fileName}_density_map_out0.png', density_img0)
plt.imsave(f'./detect_density_out/{fileName}_density_map_out1.png', density_img1)
plt.imsave(f'./detect_density_out/{fileName}_density_map_out2.png', density_img2)
plt.imsave(f'./detect_density_out/{fileName}_density_map_out3.png', density_img3)
else: # 单类别
fileName = imagePath.replace('.png', '')
source_img = np.copy(img.cpu())
density_img0 = np.copy(density_map_out[0][0].cpu())
plt.imsave(f'./detect_density_out/{fileName}_source_img.png', source_img[0])
plt.imsave(f'./detect_density_out/{fileName}_density_map_out0.png', density_img0)
#############################################################################
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
t2 = time_synchronized()
# Process detections
for i, det in enumerate(pred): # detections per image
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # img.jpg
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
s += '%gx%g ' % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results
# 输出细胞检测的结果
cellResult = {}
cellResult['version'] = '4.5.7'
cellResult['flags'] = {}
cellResult['shapes'] = []
#数据存储到本地
cellResult['imagePath'] = imagePath
cellResult['imageData'] = None
cellResult['imageHeight'] = 512
cellResult['imageWidth'] = 512
for *xyxy, conf, cls in reversed(det):
cellShape = {}
if save_txt and False: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
if save_img or view_img: # Add bbox to image
label = f'{names[int(cls)]} {conf:.2f}'
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
# 保存标签的json
if opt.save_label_json:
label = f'{names[int(cls)]}'
cellShape['label'] = label
cellShape['points'] = []
cellShape['points'].append([xyxy[0].data.cpu().numpy().tolist(),xyxy[1].data.cpu().numpy().tolist()])
cellShape['points'].append([xyxy[2].data.cpu().numpy().tolist(),xyxy[3].data.cpu().numpy().tolist()])
cellShape['group_id'] = None
cellShape['shape_type'] = 'rectangle'
cellShape['flags'] = {}
cellResult['shapes'].append(cellShape)
with open(txt_path+'.json','w') as file:
print('保存的文件路径 ==> '+txt_path+'.json')
json.dump(cellResult,file)
# Print time (inference + NMS)
print(f'{s}Done. ({t2 - t1:.3f}s)')
# Stream results
if view_img:
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond
# Save results (image with detections)
if save_img:
if dataset.mode == 'image':
cv2.imwrite(save_path, im0)
else: # 'video'
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
fourcc = 'mp4v' # output video codec
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
vid_writer.write(im0)
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
print(f"Results saved to {save_dir}{s}")
print(f'Done. ({time.time() - t0:.3f}s)')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# runs/train/a_0.25_b_1.5/weights/best.pt runs/train/yolo-baseline/weights/best.pt
# runs/train/localunet_density_multi/weights/best.pt
parser.add_argument('--weights', nargs='+', type=str, default='runs/train/localunet_density_multi/weights/best.pt', help='model.pt path(s)')
# parser.add_argument('--source', type=str, default='../ki67Dataset/AllImage/val/images', help='source')
parser.add_argument('--source', type=str, default='analysisData', help='source')
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.4, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
parser.add_argument('--device', default='0,1', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-json', action='store_true', help='save results to *.json')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--save-label-json', default=True, action='store_true', help='save label results to *.json')
# save_label_json
opt = parser.parse_args()
print(opt)
check_requirements()
opt.save_txt = True
with torch.no_grad():
if opt.update: # update all models (to fix SourceChangeWarning)
for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
detect()
strip_optimizer(opt.weights)
else:
detect()