-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
411 lines (354 loc) · 16.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
# This code is written by Jingyuan Yang @ XD
"""Train Emotion_LDL with Pytorch"""
import torch
import argparse
import torchvision
import torchvision.transforms as transforms
import os
import random
from data_LDL import Emotion_LDL
from models import *
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from adamw import AdamW
# from torch.autograd import Variable
import utils
import math
import numpy as np
from torchvision import models
from tensorboardX import SummaryWriter
# from models.TL import Triplet
from models.CE_loss_softmax import CELoss_softmax
from models.MSE_loss_theta import MSE_Loss_theta
from models.Polarloss import PolarLoss
# from models.CE_loss_weighed import CELoss_weighed
from models.polar_coordinates import Polar_coordinates
from evaluation_metric import Evaluation_metrics
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
# random seed
def set_seed(seed):
# random.seed(seed) ##
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# torch.backends.benchmark = False # if benchmark=True, deterministic will be False
torch.backends.cudnn.deterministic = True # cudnn
# os.environ['PYTHONHASHSEED'] = str(seed)
def main():
# Parameters
parser = argparse.ArgumentParser(description='PyTorch Emotion_LDL CNN Training')
parser.add_argument('--img_path', type=str, default='/home/yjy/Dataset/Emotion_LDL/Twitter_LDL/images/')
parser.add_argument('--train_csv_file', type=str,
default='/home/yjy/Dataset/Emotion_LDL/Twitter_LDL/csv_6/annotations_train.csv')
# FLICKR csv_7 TWITTER csv_6
parser.add_argument('--test_csv_file', type=str,
default='/home/yjy/Dataset/Emotion_LDL/Twitter_LDL/csv_6/annotations_test.csv')
parser.add_argument('--ckpt_path', type=str, default='/home/yjy/Code/DistNet/ckpts_twi_kl_p')
parser.add_argument('--model', type=str, default='ResNet_50', help='CNN architecture')
parser.add_argument('--dataset', type=str, default='Emotion_LDL', help='Dataset')
parser.add_argument('--batch_size', default=16, type=int, help='batch size')
parser.add_argument('--resume', '-r', action='store_true', help='resume from checkposint')
parser.add_argument('--if_decay', default=1, type=int, help='decay lr every 5 epochs')
parser.add_argument('--decay', default=0.1, type=float, help='decay value every 5 epochs')
parser.add_argument('--start', default=10, type=float, help='decay value every 5 epochs')
parser.add_argument('--every', default=10, type=float, help='decay value every 5 epochs')
parser.add_argument('--lr_adam', default=1e-5, type=float, help='learning rate for adam|5e-4|1e-5|smaller')
parser.add_argument('--lr_sgd', default=1e-3, type=float, help='learning rate for sgd|1e-3|5e-4')
parser.add_argument('--wd', default=5e-5, type=float, help='weight decay for adam|1e-4|5e-5')
parser.add_argument('--optimizer', default='adamw', type=str, help='sgd|adam|adamw')
parser.add_argument('--gpu', default=0, type=int, help='0|1|2|3')
parser.add_argument('--seed', default=66, type=int, help='just a random seed')
opt = parser.parse_args()
# set gpu device
torch.cuda.set_device(opt.gpu)
set_seed(seed=opt.seed)
writer = SummaryWriter()
best_test_acc = 0
best_test_acc_epoch = 0
best_test_loss = 20
best_test_loss_epoch = 0
start_epoch = 0
learning_rate_decay_start = opt.start
learning_rate_decay_every = opt.every
learning_rate_decay_rate = opt.decay
total_epoch = 55
path = os.path.join(opt.dataset + '_' + opt.model)
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.Resize(480), # resize the short side to 480, and resize the long side proportionally
transforms.RandomCrop(448), # different from resize, randomcrop will crop a square of 448*448, disproportionally
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
transform_test = transforms.Compose([
transforms.Resize(480),
transforms.RandomCrop(448),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
trainset = Emotion_LDL(csv_file=opt.train_csv_file, root_dir=opt.img_path, transform=transform_train)
testset= Emotion_LDL(csv_file=opt.test_csv_file, root_dir=opt.img_path, transform=transform_test)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=opt.batch_size, shuffle=True, num_workers=8)
testloader = torch.utils.data.DataLoader(testset, batch_size=opt.batch_size, shuffle=False, num_workers=8)
# Model
if opt.model == 'ResNet_50':
base_model = models.resnet50(pretrained=True) ###
net = model_baseline(base_model)
elif opt.model == 'ResNet_101':
base_model = models.resnet101(pretrained=True) ###
net = model_baseline(base_model)
elif opt.model == 'VGG_19':
base_model = models.vgg19(pretrained=True)
net = model_baseline(base_model)
param_num = 0
for param in net.parameters():
param_num = param_num + int(np.prod(param.shape))
print('==> Trainable params: %.2f million' % (param_num / 1e6))
#print(np.prod(net.lstm.parameters()[1].shape))
if opt.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
checkpoint = torch.load('/home/yjy/Code/gnn/ckpts1/epoch-19.pkl', map_location="cuda:0")
net.load_state_dict(checkpoint)
else:
print('==> Building model..')
if torch.cuda.is_available():
net.cuda()
CEloss = nn.CrossEntropyLoss()
MSEloss = nn.MSELoss()
KLloss = nn.KLDivLoss(size_average=False, reduce=True)
# KLloss = nn.KLDivLoss(reduction='batchmean')
MSELoss_theta = MSE_Loss_theta()
Polarloss = PolarLoss()
# Triploss = Triplet(measure='cosine', max_violation=True) #MARGIN
# CEloss_weighed = CELoss_weighed()
if torch.cuda.is_available():
CEloss = CEloss.cuda()
MSEloss = MSEloss.cuda()
KLloss = KLloss.cuda()
if opt.optimizer == 'adam':
optimizer = optim.Adam(net.parameters(), lr=opt.lr_adam, weight_decay=opt.wd)
elif opt.optimizer == 'adamw':
optimizer = AdamW(net.parameters(), lr=opt.lr_adam, weight_decay=opt.wd, amsgrad=False)
elif opt.optimizer == 'sgd':
optimizer = optim.SGD(net.parameters(), lr=opt.lr_sgd, momentum=0.9, weight_decay=5e-4)
# Data
print('==> Preparing data..')
for epoch in range(start_epoch, total_epoch):
print(epoch)
# set_seed(seed=opt.seed)
train(epoch, opt, net, writer, trainloader, optimizer, KLloss, MSEloss, Polar_coordinates, MSELoss_theta, Polarloss)
best_test_acc, best_test_acc_epoch = test(epoch, net, writer, testloader, KLloss, best_test_acc,
best_test_acc_epoch, path, MSEloss, Polar_coordinates, MSELoss_theta, Polarloss)
print("best_test_acc: %0.3f" % best_test_acc)
print("best_test_acc_epoch: %d" % best_test_acc_epoch)
def l2norm(X):
norm = torch.pow(X, 2).sum(dim=1, keepdim=True).sqrt()
X = torch.div(X, norm)
return X
# Training
def train(epoch, opt, net, writer, trainloader, optimizer, KLloss, MSEloss, Polar_coordinates, MSELoss_theta, Polarloss):
# set_seed(seed=opt.seed)
print('\nEpoch: %d' % epoch)
global train_acc
train_loss = 0
train_loss1 = 0
train_loss2 = 0
train_loss3 = 0
train_Dist_1 = 0
train_Dist_2 = 0
train_Dist_3 = 0
train_Dist_4 = 0
train_Sim_1 = 0
train_Sim_2 = 0
correct = 0
total = 0
if opt.if_decay == 1:
if epoch >= opt.start:
frac = (epoch - opt.start) // opt.every + 1 # round
decay_factor = opt.decay ** frac # how many times we have this decay
if opt.optimizer == 'adam':
current_lr = opt.lr_adam
elif opt.optimizer == 'adamw':
current_lr = opt.lr_adam
elif opt.optimizer == 'sgd':
current_lr = opt.lr_sgd
current_lr = current_lr * decay_factor # new learning rate
for rr in range(len(optimizer.param_groups)):
utils.set_lr(optimizer, current_lr, rr) # set the decayed learning rate
else:
if opt.optimizer == 'adam':
current_lr = opt.lr_adam
elif opt.optimizer == 'adamw':
current_lr = opt.lr_adam
elif opt.optimizer == 'sgd':
current_lr = opt.lr_sgd
print('learning_rate: %s' % str(current_lr))
for batch_idx, data in enumerate(trainloader):
images = data['image']
image_name = data['img_id']
dist_emo = data['dist_emo']
if torch.cuda.is_available():
images = images.cuda()
dist_emo = dist_emo.cuda()
optimizer.zero_grad()
net.train()
emo = net(images)
# print('emo', emo)
# print('dist_emo', dist_emo)
theta_emo, r_emo = Polar_coordinates(emo)
theta_dist_emo, r_dist_emo = Polar_coordinates(dist_emo)
weight = r_dist_emo
loss1 = KLloss(emo.log(), dist_emo)
# loss1 = KLloss(emo, dist_emo)
loss2 = MSELoss_theta(theta_emo, theta_dist_emo, r_dist_emo)
# loss3 = MSEloss(r_emo, r_dist_emo)
loss3 = Polarloss(theta_emo, theta_dist_emo, r_dist_emo)
# loss = loss1 + loss2 ##################
# loss = loss1 + loss3 ##############
loss = loss1 ##############
loss.backward()
# loss.backward(loss.clone().detach())
# for param in net.parameters():
# print(param.grad)
# torch.nn.utils.clip_grad_norm_(filter(lambda p: p.requires_grad, net.lstm.parameters()), 1.0) #1
optimizer.step()
# print(loss.item())
train_loss1 += loss1.item()
train_loss2 += loss2.item()
train_loss3 += loss3.item()
train_loss += loss.item()
Dis_1, Dis_2, Dis_3, Dis_4, Sim_1, Sim_2 = Evaluation_metrics(emo, dist_emo)
train_Dist_1 += Dis_1
train_Dist_2 += Dis_2
train_Dist_3 += Dis_3
train_Dist_4 += Dis_4
train_Sim_1 += Sim_1
train_Sim_2 += Sim_2
_, predicted = torch.max(emo.data, 1)
_, labeled = torch.max(dist_emo.data, 1)
total += dist_emo.size(0)
correct += predicted.eq(labeled.data).cpu().sum().numpy()
train_acc = 100. * correct / total
utils.progress_bar(batch_idx, len(trainloader),
'Loss1: %.3f Loss2: %.3f Loss3: %.3f Loss: %.3f '
'| Chebyshev: %.3f Clark: %.3f Canberra: %.3f KL: %.3f Cosine: %.3f Inter: %.3f Acc: %.3f%%'
% (train_loss1 / (batch_idx + 1), train_loss2 / (batch_idx + 1),
train_loss3 / (batch_idx + 1), train_loss / (batch_idx + 1),
train_Dist_1 / (batch_idx + 1), train_Dist_2 / (batch_idx + 1),
train_Dist_3 / (batch_idx + 1), train_Dist_4 / (batch_idx + 1),
train_Sim_1 / (batch_idx + 1), train_Sim_2 / (batch_idx + 1), train_acc))
writer.add_scalar('data/Train_Loss', train_loss, epoch)
writer.add_scalar('data/Train_Loss1', train_loss1 / (batch_idx + 1), epoch)
writer.add_scalar('data/Train_Loss2', train_loss2 / (batch_idx + 1), epoch)
writer.add_scalar('data/Train_Loss3', train_loss3 / (batch_idx + 1), epoch)
writer.add_scalar('data/Train_Chebyshev', train_Dist_1 / (batch_idx + 1), epoch)
writer.add_scalar('data/Train_Clark', train_Dist_2 / (batch_idx + 1), epoch)
writer.add_scalar('data/Train_Canberra', train_Dist_3 / (batch_idx + 1), epoch)
writer.add_scalar('data/Train_KL', train_Dist_4 / (batch_idx + 1), epoch)
writer.add_scalar('data/Train_Cosine', train_Sim_1 / (batch_idx + 1), epoch)
writer.add_scalar('data/Train_Inter', train_Sim_2 / (batch_idx + 1), epoch)
writer.add_scalar('data/Train_Acc', train_acc, epoch)
print('==> Saving model...')
torch.save(net.state_dict(), os.path.join(opt.ckpt_path, 'epoch-%d.pkl' % epoch))
# Test
def test(epoch, net, writer, testloader, KLloss, best_test_acc, best_test_acc_epoch, path, MSEloss, Polar_coordinates, MSELoss_theta, Polarloss):
# set_seed(seed=opt.seed)
global test_acc
# global best_test_acc
# global best_test_acc_epoch
# global best_test_loss
# global best_test_loss_epoch
test_loss1 = 0
test_loss2 = 0
test_loss3 = 0
test_Dist_1 = 0
test_Dist_2 = 0
test_Dist_3 = 0
test_Dist_4 = 0
test_Sim_1 = 0
test_Sim_2 = 0
test_loss = 0
correct = 0
total = 0
for batch_idx, data in enumerate(testloader):
images = data['image']
dist_emo = data['dist_emo']
if torch.cuda.is_available():
images = images.cuda()
dist_emo = dist_emo.cuda()
with torch.no_grad():
net.eval()
emo = net(images)
theta_emo, r_emo = Polar_coordinates(emo)
theta_dist_emo, r_dist_emo = Polar_coordinates(dist_emo)
weight = r_dist_emo
loss1 = KLloss(emo.log(), dist_emo)
# loss1 = KLloss(emo, dist_emo)
loss2 = MSELoss_theta(theta_emo, theta_dist_emo, r_dist_emo)
# loss3 = MSEloss(r_emo, r_dist_emo)
loss3 = Polarloss(theta_emo, theta_dist_emo, r_dist_emo)
# loss = loss1 + loss2 #############
# loss = loss1 + loss3 ##############
loss = loss1 ###########
test_loss1 += loss1.item()
test_loss2 += loss2.item()
test_loss3 += loss3.item()
test_loss += loss.item()
Dis_1, Dis_2, Dis_3, Dis_4, Sim_1, Sim_2 = Evaluation_metrics(emo, dist_emo)
test_Dist_1 += Dis_1
test_Dist_2 += Dis_2
test_Dist_3 += Dis_3
test_Dist_4 += Dis_4
test_Sim_1 += Sim_1
test_Sim_2 += Sim_2
_, predicted = torch.max(emo.data, 1)
_, labeled = torch.max(dist_emo.data, 1)
total += dist_emo.size(0)
correct += predicted.eq(labeled.data).cpu().sum().numpy()
test_acc = 100. * correct / total
utils.progress_bar(batch_idx, len(testloader),
'Loss1: %.3f Loss2: %.3f Loss3: %.3f Loss: %.3f '
'| Chebyshev: %.3f Clark: %.3f Canberra: %.3f KL: %.3f Cosine: %.3f Inter: %.3f Acc: %.3f%%'
% (test_loss1 / (batch_idx + 1), test_loss2 / (batch_idx + 1),
test_loss3 / (batch_idx + 1), test_loss / (batch_idx + 1),
test_Dist_1 / (batch_idx + 1), test_Dist_2 / (batch_idx + 1),
test_Dist_3 / (batch_idx + 1), test_Dist_4 / (batch_idx + 1),
test_Sim_1 / (batch_idx + 1), test_Sim_2 / (batch_idx + 1), test_acc))
writer.add_scalar('data/Test_Loss', test_loss / (batch_idx + 1), epoch)
writer.add_scalar('data/Test_Loss1', test_loss1 / (batch_idx + 1), epoch)
writer.add_scalar('data/Test_Loss2', test_loss2 / (batch_idx + 1), epoch)
writer.add_scalar('data/Test_Loss3', test_loss3 / (batch_idx + 1), epoch)
writer.add_scalar('data/Test_Chebyshev', test_Dist_1 / (batch_idx + 1), epoch)
writer.add_scalar('data/Test_Clark', test_Dist_2 / (batch_idx + 1), epoch)
writer.add_scalar('data/Test_Canberra', test_Dist_3 / (batch_idx + 1), epoch)
writer.add_scalar('data/Test_KL', test_Dist_4 / (batch_idx + 1), epoch)
writer.add_scalar('data/Test_Cosine', test_Sim_1 / (batch_idx + 1), epoch)
writer.add_scalar('data/Test_Inter', test_Sim_2 / (batch_idx + 1), epoch)
writer.add_scalar('data/Test_Acc', test_acc, epoch)
# Save checkpoint.
if test_acc > best_test_acc:
# if (test_loss / (batch_idx + 1)) < best_test_loss:
print('==> Finding best acc..')
# print("best_test_acc: %0.3f" % test_acc)
state = {
'net': net.state_dict() if torch.cuda.is_available() else net,
'acc': test_acc,
'epoch': epoch,
}
if not os.path.isdir(path):
os.mkdir(path)
torch.save(state, os.path.join(path,'test_model.t7'))
best_test_acc = test_acc
best_test_acc_epoch = epoch
return best_test_acc, best_test_acc_epoch
if __name__ == '__main__':
main()
print('Finish training')