-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmodel.py
650 lines (571 loc) · 24.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
import os
import logging
import random
import h5py
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim.lr_scheduler import StepLR
from torch.utils import tensorboard
from torch.distributions import Normal
from module import ConvNet
from utils import (
rotation_6d_to_matrix,
matrix_to_rotation_6d,
load_smplx_model,
blend_shapes,
vertices2joints,
batch_rigid_transform,
so3_relative_angle,
SPEAKERS_CONFIG,
)
def init(module):
if isinstance(module, nn.Conv1d) or isinstance(module, nn.Linear):
nn.init.normal_(module.weight, mean=0, std=0.01)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
class Motion_Process(nn.Module):
def __init__(self) -> None:
super(Motion_Process, self).__init__()
def encode_motion(self, motion: torch.Tensor):
return motion
def decode_motion(self, motion: torch.Tensor) -> torch.Tensor:
return motion
def calculate_pos(self, motion: torch.Tensor) -> torch.Tensor:
return motion
def calculate_joint_speed(self, pos: torch.Tensor) -> torch.Tensor:
return pos[:, 1:] - pos[:, :-1]
class Process_3D_Motion(nn.Module):
def __init__(
self,
smplx_path,
ignore_joints=None, # set the rotation of the joints to identity
) -> None:
super(Process_3D_Motion, self).__init__()
if ignore_joints is None:
self.ignore_joints = []
else:
self.ignore_joints = ignore_joints
data_struct = load_smplx_model(smplx_path)
self.register_buffer("parents", data_struct["parents"])
self.joint_num = len(self.parents)
meta_betas = torch.zeros(1, 20).float()
v_shaped = data_struct["v_template"] + blend_shapes(meta_betas, data_struct["shapedirs"])
self.register_buffer("J", vertices2joints(data_struct["J_regressor"], v_shaped))
self.selected_joints = [i for i in range(self.joint_num) if i not in self.ignore_joints]
def encode_motion(self, motion: torch.Tensor) -> torch.Tensor:
assert len(motion.shape) == 5, f"Expects an array of size BxTxNx3x3, but received {motion.shape}"
B, T = motion.shape[:2]
# motion[:, :, self.ignore_joints] = torch.eye(3, device=motion.device)
motion = motion[:, :, self.selected_joints, :2, :3].reshape(B, T, -1)
return motion
def decode_motion(self, motion: torch.Tensor):
"""
Args:
inputs: input tensor of shape: (B, T, C)
"""
assert len(motion.shape) == 3, f"Expects an array of size BxTxC, but received {motion.shape}"
B, T = motion.shape[:2]
rot_mats = rotation_6d_to_matrix(motion.reshape(-1, 6)).reshape(B, T, -1, 3, 3)
output = torch.eye(3, device=rot_mats.device).tile(B, T, self.joint_num, 1, 1)
output[:, :, self.selected_joints] = rot_mats
# rot_mats = rot_mats.reshape(B, T, -1, 3, 3)
return output
def calculate_pos(self, motion: torch.Tensor) -> torch.Tensor:
assert len(motion.shape) == 5, f"Expects an array of size BxTxNx3x3, but received {motion.shape}"
B, T = motion.shape[:2]
motion[:, :, self.ignore_joints] = torch.eye(3, device=motion.device)
rot_mats = motion.reshape(B * T, -1, 3, 3)
poses, _ = batch_rigid_transform(
rot_mats,
self.J.expand(rot_mats.shape[0], self.joint_num, 3),
self.parents,
dtype=torch.float32,
)
poses = poses.reshape(B, T, -1, 3)
return poses
def calculate_joint_speed(self, pos: torch.Tensor) -> torch.Tensor:
# assert len(pos.shape) == 4, f"Expects an array of size BxTxNxC, but received {pos.shape}"
return pos[:, 1:] - pos[:, :-1]
class Process_S2G_Motion(Motion_Process):
def __init__(self, args) -> None:
super(Process_S2G_Motion, self).__init__()
joint_ids = np.delete(np.arange(52), [7, 8, 9])
self.register_buffer("joint_ids", torch.LongTensor(joint_ids))
self.register_buffer(
"mean",
torch.FloatTensor(SPEAKERS_CONFIG[args.speaker]["mean"].reshape(2, 49)),
)
self.register_buffer(
"std",
torch.FloatTensor(
SPEAKERS_CONFIG[args.speaker]["std"].reshape(2, 49)
+ np.finfo(float).eps
),
)
def encode_motion(self, motion: torch.Tensor) -> torch.Tensor:
assert len(motion.shape) == 4 and motion.shape[2] == 52
B, T = motion.shape[:2]
motion = motion.take_along_dim(self.joint_ids, dim=2)
motion -= motion[:, :, :, 0:1]
motion = (motion - self.mean) / self.std
motion = motion[:, :, 1:].reshape(B, T, 48 * 2)
return motion
def decode_motion(self, motion: torch.Tensor) -> torch.Tensor:
assert (
len(motion.shape) == 3
), f"Expects an array of size BxTxC, but received {motion.shape}"
B, T = motion.shape[:2]
motion = motion.reshape(B, T, 2* 48)
motion = torch.cat((torch.zeros(motion.shape[0], 2, 1), motion), dim=2)
motion = motion * self.std + self.mean
return motion
class Model:
def __init__(self, args, mode="Train"):
super().__init__()
self.args = args
if args.dataset == "Speech2Gestures":
self.motion_processor = Process_S2G_Motion(args)
elif args.dataset == "Trinity":
self.motion_processor = Process_3D_Motion(args.smplx_path, ignore_joints=list(range(22,55)))
else:
raise NotImplementedError
self.device = torch.device(args.device)
self.logger = tensorboard.SummaryWriter(args.log_dir)
self.net_G = torch.nn.ModuleDict(
{
"audio_enc": Audio_Enc(args),
"motion_enc": Motion_Enc(args),
"motion_dec": Motion_Dec(args),
"mapping_net": MappingNet(args),
}
).to(self.device)
self.motion_processor.to(self.device)
self.net_G.apply(init)
if mode == "Train":
self.optimG = self.init_optim(self.net_G.parameters())
self.global_step = 0
self.epoch = 0
def log(self, batch, loss_dict):
for key in loss_dict:
self.logger.add_scalar(key, loss_dict[key].item(), self.global_step)
if batch % self.args.log_freq == 0:
logging.info(
f"Name: {self.args.name}, Epoch: {self.epoch}, Batch: {batch}/{self.batch_counts_per_epoch}"
)
for key in loss_dict:
logging.info(f"{key}: {loss_dict[key].item()}")
def sampling(self, size=None, mean=None, var=None):
if self.args.using_mspec_stat:
normal = Normal(mean, var)
z_x = normal.sample((size,)).permute(1, 0, 2)
else:
z_x = torch.randn(size, device=self.device)
if self.args.with_mapping_net:
z_x = self.net_G["mapping_net"](z_x)
return z_x
def inference(self, audios: torch.Tensor, motions=None):
if self.args.seq_len > 0:
seq_len = min(audios.shape[1], self.args.seq_len)
else:
seq_len = audios.shape[1]
if motions is None:
if self.args.using_mspec_stat:
with h5py.File(
f"{self.args.result_path}/stat/motion_spec_stat.h5", "r"
) as f:
means = torch.FloatTensor(f["means"][()]).to(self.device)
vars = torch.FloatTensor(f["vars"][()]).to(self.device)
z_audio_share = self.net_G["audio_enc"](audios[:, :seq_len])
if motions is None:
if self.args.using_mspec_stat:
idx = random.randint(0, means.shape[0] - 1)
z_motion_spec = self.sampling(
mean=means[idx : idx + 1], var=vars[idx : idx + 1], size=z_audio_share.shape[1]
)
else:
z_motion_spec = self.sampling(size=z_audio_share.shape)
else:
_, z_motion_spec = self.net_G["motion_enc"](motions[:, :seq_len])
pred_motions = self.net_G["motion_dec"](z_audio_share, z_motion_spec)
return pred_motions
def train_one_batch(self, audios: torch.Tensor, motions: torch.Tensor):
self.z_audio_share = self.net_G["audio_enc"](audios)
(self.z_motion_share, self.z_motion_specific,) = self.net_G["motion_enc"](
motions
)
recon_m = self.net_G["motion_dec"](self.z_motion_share, self.z_motion_specific)
a2m = self.net_G["motion_dec"](self.z_audio_share, self.z_motion_specific)
self.z_x = self.sampling(
size=self.z_motion_specific.shape[1],
mean=self.z_motion_specific.mean(dim=(1,)),
var=self.z_motion_specific.std(dim=(1,)),
)
a2x = self.net_G["motion_dec"](self.z_audio_share, self.z_x)
(self.z_a2x_share, self.z_a2x_spec) = self.net_G["motion_enc"](
self.motion_processor.encode_motion(self.motion_processor.decode_motion(a2x))
)
return recon_m, a2m, a2x
def calculate_2d_loss(self, tgt_p, recon_p, a2m_p, a2x_p, batch):
tgt_p = self.motion_processor.decode_motion(tgt_p)
recon_p = self.motion_processor.decode_motion(recon_p)
a2m_p = self.motion_processor.decode_motion(a2m_p)
a2x_p = self.motion_processor.decode_motion(a2x_p)
tgt_s = self.motion_processor.calculate_joint_speed(tgt_p)
recon_s = self.motion_processor.calculate_joint_speed(recon_p)
a2m_s = self.motion_processor.calculate_joint_speed(a2m_p)
a2x_s = self.motion_processor.calculate_joint_speed(a2x_p)
joint_distance = torch.abs(a2x_p - tgt_p)
loss_G_dict = {
"pos/recon_position": F.l1_loss(recon_p, tgt_p) * self.args.lambda_pose,
"speed/recon_speed": F.l1_loss(recon_s, tgt_s) * self.args.lambda_speed,
"pos/audio2position": F.l1_loss(a2m_p, tgt_p) * self.args.lambda_pose,
"speed/audio2speed": F.l1_loss(a2m_s, tgt_s) * self.args.lambda_speed,
"pos/audio2position_x": joint_distance[
joint_distance > self.args.tolerance
].mean()
* self.args.lambda_xpose,
"speed/audio2speed_x": F.l1_loss(a2x_s, tgt_s) * self.args.lambda_xspeed,
}
if self.args.with_code_constrain:
loss_G_dict.update(
{
"code/share_code_constrain": F.l1_loss(
self.z_audio_share, self.z_motion_share
)
* self.args.lambda_code,
}
)
if self.args.with_cyc:
loss_G_dict.update(
{
"code/cyc_spec": F.l1_loss(self.z_a2x_spec, self.z_x)
* self.args.lambda_cyc,
"code/cyc_share": F.l1_loss(self.z_a2x_share, self.z_motion_share) * self.args.lambda_cyc,
}
)
if self.args.with_ds:
loss_G_dict.update(
{
"pos/diverse": -F.l1_loss(a2x_p, a2m_p.detach())
* self.args.lambda_ds,
}
)
loss_G_dict.update(self.net_G["audio_enc"].get_loss_dict())
loss_G_dict.update(self.net_G["motion_enc"].get_loss_dict())
loss_G_dict.update(self.net_G["mapping_net"].get_loss_dict())
self.log(batch, loss_G_dict)
loss_G = torch.stack(list(loss_G_dict.values())).sum()
return loss_G
def calculate_3d_loss(self, tgt_m, recon_m, a2m, a2x, batch):
tgt_r = self.motion_processor.decode_motion(tgt_m)
recon_r = self.motion_processor.decode_motion(recon_m)
a2m_r = self.motion_processor.decode_motion(a2m)
a2x_r = self.motion_processor.decode_motion(a2x)
tgt_p = self.motion_processor.calculate_pos(tgt_r)
recon_p = self.motion_processor.calculate_pos(recon_r)
a2m_p = self.motion_processor.calculate_pos(a2m_r)
a2x_p = self.motion_processor.calculate_pos(a2x_r)
tgt_s = self.motion_processor.calculate_joint_speed(tgt_p)
recon_s = self.motion_processor.calculate_joint_speed(recon_p)
a2m_s = self.motion_processor.calculate_joint_speed(a2m_p)
a2x_s = self.motion_processor.calculate_joint_speed(a2x_p)
joint_distance = torch.abs(a2x_p - tgt_p)
loss_G_dict = {
"rot/recon_rotmats": so3_relative_angle(recon_r, tgt_r).mean()
* self.args.lambda_rotmat,
"pos/recon_position": F.l1_loss(recon_p, tgt_p) * self.args.lambda_pose,
"speed/recon_speed": F.l1_loss(recon_s, tgt_s) * self.args.lambda_speed,
"rot/audio2motion": so3_relative_angle(a2m_r, tgt_r).mean()
* self.args.lambda_rotmat,
"pos/audio2position": F.l1_loss(a2m_p, tgt_p) * self.args.lambda_pose,
"speed/audio2speed": F.l1_loss(a2m_s, tgt_s) * self.args.lambda_speed,
"rot/audio2motion_x": so3_relative_angle(a2x_r, tgt_r).mean()
* self.args.lambda_xrotmat,
"pos/audio2position_x": joint_distance[
joint_distance > self.args.tolerance
].mean()
* self.args.lambda_xpose,
"speed/audio2speed_x": F.l1_loss(a2x_s, tgt_s) * self.args.lambda_xspeed,
}
if self.args.with_code_constrain:
loss_G_dict.update(
{
"code/share_code_constrain": F.l1_loss(
self.z_audio_share, self.z_motion_share
)
* self.args.lambda_code,
}
)
if self.args.with_cyc:
loss_G_dict.update(
{
"code/cyc_spec": F.l1_loss(self.z_a2x_spec, self.z_x)
* self.args.lambda_cyc,
"code/cyc_share": F.l1_loss(self.z_a2x_share, self.z_motion_share) * self.args.lambda_cyc,
}
)
if self.args.with_ds:
loss_G_dict.update(
{
"pos/diverse": -F.l1_loss(a2x_p, a2m_p.detach())
* self.args.lambda_ds,
}
)
loss_G_dict.update(self.net_G["audio_enc"].get_loss_dict())
loss_G_dict.update(self.net_G["motion_enc"].get_loss_dict())
loss_G_dict.update(self.net_G["mapping_net"].get_loss_dict())
self.log(batch, loss_G_dict)
loss_G = torch.stack(list(loss_G_dict.values())).sum()
return loss_G
def train(self, dataloader):
os.makedirs(self.args.ckpt_dir, exist_ok=False)
self.net_G.train()
self.batch_counts_per_epoch = len(dataloader)
init_lambda_ds = self.args.lambda_ds
while self.epoch < self.args.epochs:
data_iter = iter(dataloader)
batch = 0
while batch < self.batch_counts_per_epoch:
data = data_iter.next()
if self.args.lambda_ds > 0:
self.args.lambda_ds -= init_lambda_ds / 500000
audios = data["audios"].float().to(self.device)
motion = data["poses"].float().to(self.device)
self.optimG.zero_grad()
motion = self.motion_processor.encode_motion(motion)
recon_m, a2m, a2x = self.train_one_batch(
audios, motion
)
if self.args.dataset in ["Trinity"]:
loss_G = self.calculate_3d_loss(
motion, recon_m, a2m, a2x, batch
)
elif self.args.dataset in ["Speech2Gesture"]:
loss_G = self.calculate_2d_loss(
motion, recon_m, a2m, a2x, batch
)
loss_G.backward()
self.optimG.step()
batch += 1
self.global_step += 1
self.epoch += 1
if self.epoch % self.args.save_freq == 0:
self.save(loss_G.item())
def init_optim(self, param):
if self.args.optim == "Adam":
logging.info("Using Adam optimizer")
logging.info(f"lr: {self.args.lr}")
return torch.optim.Adam(param, lr=self.args.lr)
elif self.args.optim == "AdamW":
logging.info("Using AdamW optimizer")
logging.info(f"lr: {self.args.lr}")
return torch.optim.AdamW(param, lr=self.args.lr)
elif self.args.optim == "RMSProp":
logging.info("Using RMSProp optimizer")
logging.info(f"lr: {self.args.lr}")
return torch.optim.RMSprop(param, lr=self.args.lr)
elif self.args.optim == "SGD":
logging.info("Using SGD optimizer")
logging.info(f"lr: {self.args.lr}, momentum: {self.args.momentum}")
return torch.optim.SGD(param, lr=self.args.lr, momentum=self.args.momentum,)
else:
raise NotImplementedError
def save(self, loss):
state = {"args": self.args}
state["net_G"] = self.net_G.state_dict()
state["epoch"] = self.epoch
state["global_step"] = self.global_step
state["loss"] = loss
torch.save(state, os.path.join(self.args.ckpt_dir, f"epoch{self.epoch}.pth"))
logging.info(f"parameters of epoch {self.epoch} saved")
def resume(self, weight_path: str):
weight = torch.load(weight_path, map_location=self.device,)
self.net_G.load_state_dict(weight["net_G"])
self.epoch = weight["epoch"]
self.global_step = weight["global_step"]
class VAE(nn.Module):
def __init__(self, args) -> None:
super(VAE, self).__init__()
self.global_step = 0
def reparameterize(cls, mu, logvar):
eps = torch.randn_like(logvar)
std = torch.exp(0.5 * logvar)
return mu + eps * std
def kl_scheduler(self):
return max((self.global_step // 10) % 10000 * 0.0001, 0.0001)
def kl_divergence(cls, mu, logvar):
return torch.mean(-0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp(), dim=1,))
def step(self):
self.global_step += 1
class Audio_Enc(VAE):
def __init__(self, args):
super(Audio_Enc, self).__init__(args)
self.args = args
self.TCN = ConvNet(
args.audio_size, [128, 128, 96, 96, 64], dropout=args.dropout
)
self.share_mean = nn.Sequential(
nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, args.audio_hidden_size),
)
self.share_var = nn.Sequential(
nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, args.audio_hidden_size),
)
def forward(self, inputs: torch.Tensor):
"""
Args:
inputs: input tensor of shape: (B, T, C)
"""
output = self.TCN(inputs.permute(0, 2, 1)).permute(0, 2, 1)
if self.args.with_audio_share_vae:
self.z_share_mu = self.share_mean(output)
self.z_share_var = self.share_var(output)
z_share = self.reparameterize(self.z_share_mu, self.z_share_var)
else:
z_share = self.share_mean(output)
return z_share
def get_loss_dict(self):
loss_dict = {}
if self.args.with_audio_share_vae:
loss_dict.update(
{
"KL/audio_share": self.kl_divergence(
self.z_share_mu, self.z_share_var
)
* self.args.lambda_kl
* self.kl_scheduler(),
}
)
self.step()
return loss_dict
class Motion_Enc(VAE):
def __init__(self, args):
super(Motion_Enc, self).__init__(args)
self.args = args
input_channel = args.input_joint_num * args.input_joint_repr_dim
self.TCN = ConvNet(
input_channel, [256, 256, 128, 128, 64], dropout=args.dropout,
)
self.share_linear = nn.Linear(64, 32)
self.spec_linear = nn.Linear(64, 32)
self.share_mean = nn.Sequential(
nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, args.pose_hidden_size),
)
self.share_var = nn.Sequential(
nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, args.pose_hidden_size),
)
self.spec_mean = nn.Sequential(
nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, args.pose_hidden_size),
)
self.spec_var = nn.Sequential(
nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, args.pose_hidden_size),
)
def forward(self, inputs: torch.Tensor):
"""
Args:
inputs: input tensor of shape: (B, T, C)
"""
output = self.TCN(inputs.permute(0, 2, 1)).permute(0, 2, 1)
share_output = self.share_linear(output)
spec_output = self.spec_linear(output)
if self.args.with_motion_share_vae:
self.z_share_mu = self.share_mean(share_output)
self.z_share_var = self.share_var(share_output)
z_share = self.reparameterize(self.z_share_mu, self.z_share_var)
else:
z_share = self.share_mean(share_output)
if self.args.with_motion_spec_vae:
self.z_spec_mu = self.spec_mean(spec_output)
self.z_spec_var = self.spec_var(spec_output)
z_specific = self.reparameterize(self.z_spec_mu, self.z_spec_var)
else:
z_specific = self.spec_mean(spec_output)
return z_share, z_specific
def get_loss_dict(self):
loss_dict = {}
if self.args.with_motion_share_vae:
loss_dict.update(
{
"KL/motion_share": self.kl_divergence(
self.z_share_mu, self.z_share_var
)
* self.args.lambda_kl
* self.kl_scheduler(),
}
)
if self.args.with_motion_spec_vae:
loss_dict.update(
{
"KL/motion_spec": self.kl_divergence(
self.z_spec_mu, self.z_spec_var
)
* self.args.lambda_kl
* self.kl_scheduler(),
}
)
self.step()
return loss_dict
class Motion_Dec(VAE):
def __init__(self, args):
super(Motion_Dec, self).__init__(args)
self.args = args
output_dim = args.output_joint_repr_dim * args.output_joint_num
self.TCN = ConvNet(
args.hidden_size, [64, 128, 128, 256, 256,], dropout=args.dropout,
)
self.pose_g = nn.Sequential(
nn.Linear(256, 256), nn.ReLU(True), nn.Linear(256, output_dim),
)
def forward(self, share_feature: torch.Tensor, spec_feature: torch.Tensor):
"""
Args:
inputs: input tensor of shape: (B, T, C)
"""
output = torch.cat((share_feature, spec_feature), dim=2)
output = self.TCN(output.permute(0, 2, 1)).permute(0, 2, 1)
output = self.pose_g(output)
return output
class MappingNet(VAE):
def __init__(self, args):
super(MappingNet, self).__init__(args)
self.args = args
hidden_size = args.pose_hidden_size
self.net = nn.Sequential(
nn.Conv1d(hidden_size, hidden_size, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv1d(hidden_size, hidden_size, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv1d(hidden_size, hidden_size, kernel_size=3, padding=1),
)
self.spec_mean = nn.Sequential(
nn.Linear(hidden_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, hidden_size),
)
self.spec_var = nn.Sequential(
nn.Linear(hidden_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, hidden_size),
)
def forward(self, inputs: torch.Tensor):
output = self.net(inputs.permute(0, 2, 1)).permute(0, 2, 1)
if self.args.with_mapping_net_vae:
self.z_spec_mu = self.spec_mean(output)
self.z_spec_var = self.spec_var(output)
z_specific = self.reparameterize(self.z_spec_mu, self.z_spec_var)
else:
z_specific = self.spec_mean(output)
return z_specific
def get_loss_dict(self):
loss_dict = {}
if self.args.with_mapping_net_vae:
loss_dict.update(
{
"KL/Mapping": self.kl_divergence(self.z_spec_mu, self.z_spec_var)
* self.args.lambda_kl
* self.kl_scheduler(),
}
)
self.step()
return loss_dict