-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsafeDDPG.py
360 lines (294 loc) · 14.5 KB
/
safeDDPG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
from email import policy
# from multiprocessing.reduction import steal_handle
from turtle import forward
# from pyrsistent import T
from sqlalchemy import true
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from numpy import linalg as LA
import os
import random
import sys
import torch.optim as optim
# DPPG class
class DDPG:
def __init__(self, policy_net, value_net,
target_policy_net, target_value_net,
value_lr=2e-4,
policy_lr=1e-4):
use_cuda = torch.cuda.is_available()
self.device = torch.device("cuda" if use_cuda else "cpu")
self.policy_net = policy_net
self.value_net = value_net
self.target_policy_net = target_policy_net
self.target_value_net = target_value_net
self.value_lr = value_lr
self.policy_lr = policy_lr
self.value_optimizer = optim.Adam(value_net.parameters(), lr=value_lr)
self.policy_optimizer = optim.Adam(policy_net.parameters(), lr=policy_lr)
self.value_criterion = nn.MSELoss()
def train_step(self, replay_buffer, batch_size,
gamma=0.99,
soft_tau=1e-2):
state, action, last_action, reward, next_state, done = replay_buffer.sample(batch_size)
state = torch.FloatTensor(state).to(self.device)
next_state = torch.FloatTensor(next_state).to(self.device)
action = torch.FloatTensor(action).to(self.device)
last_action = torch.FloatTensor(last_action).to(self.device)
reward = torch.FloatTensor(reward).unsqueeze(1).to(self.device)
done = torch.FloatTensor(np.float32(done)).unsqueeze(1).to(self.device)
next_action = action+self.target_policy_net(next_state, action)
target_value = self.target_value_net(next_state, next_action.detach())
expected_value = reward + gamma*(1.0-done)*target_value
value = self.value_net(state, action)
value_loss = self.value_criterion(value, expected_value.detach())
self.value_optimizer.zero_grad()
value_loss.backward()
self.value_optimizer.step()
policy_loss = self.value_net(state, last_action+self.policy_net(state,last_action))
policy_loss = -policy_loss.mean()
self.policy_optimizer.zero_grad()
policy_loss.backward()
self.policy_optimizer.step()
for target_param, param in zip(self.target_value_net.parameters(), self.value_net.parameters()):
target_param.data.copy_(
target_param.data * (1.0 - soft_tau) + param.data*soft_tau
)
for target_param, param in zip(self.target_policy_net.parameters(), self.policy_net.parameters()):
target_param.data.copy_(
target_param.data * (1.0 - soft_tau) + param.data * soft_tau
)
# monotone policy network with dead-band between [v_min, v_max]
class SafePolicyNetwork(nn.Module):
def __init__(self, env, obs_dim, action_dim, hidden_dim,\
up=1.0,low=-1.0, alpha=0.6, node_cost = 0.1,\
use_gradient=True, safe_flow = True,\
scale = 0.20, init_w=3e-3):
super(SafePolicyNetwork, self).__init__()
use_cuda = torch.cuda.is_available()
self.device = torch.device("cuda" if use_cuda else "cpu")
self.gradient_only = False
self.env = env
self.hidden_dim = hidden_dim
self.scale = scale
#parameters for safe flow
self.upper_bound_Q = up
self.lower_bound_Q = low
self.alpha = alpha
self.node_cost = node_cost
self.use_gradient = use_gradient
self.use_safe_flow = safe_flow
#define weight and bias recover matrix
self.w_recover = torch.ones((self.hidden_dim, self.hidden_dim))
self.w_recover = -torch.triu(self.w_recover, diagonal=0)\
+torch.triu(self.w_recover, diagonal=2)+2*torch.eye(self.hidden_dim)
self.w_recover=self.w_recover.to(self.device)
self.b_recover = torch.ones((self.hidden_dim, self.hidden_dim))
self.b_recover = torch.triu(self.b_recover, diagonal=0)-torch.eye(self.hidden_dim)
self.b_recover = self.b_recover.to(self.device)
self.select_w = torch.ones(1, self.hidden_dim).to(self.device)
self.select_wneg = -torch.ones(1, self.hidden_dim).to(self.device)
# initialization
self.b = torch.rand(self.hidden_dim)
self.b = (self.b/torch.sum(self.b))*scale
self.b = torch.nn.Parameter(self.b, requires_grad=True)
self.c = torch.rand(self.hidden_dim)
self.c = (self.c/torch.sum(self.c))*scale
self.c = torch.nn.Parameter(self.c, requires_grad=True)
self.q = torch.nn.Parameter(torch.rand(action_dim, self.hidden_dim), requires_grad=True)
self.z = torch.nn.Parameter(torch.rand(action_dim, self.hidden_dim), requires_grad=True)
def forward(self, state, last_action, gamma=1):
self.w_plus=torch.matmul(torch.square(self.q), self.w_recover)
self.w_minus=torch.matmul(-torch.square(self.q), self.w_recover)
b = self.b.data
b = b.clamp(min=0)
b = self.scale*b/torch.norm(b, 1)
self.b.data = b
#maybe this part is wrong?
c = self.c.data
c = c.clamp(min=0)
c = self.scale*c/torch.norm(c, 1)
self.c.data = c
self.b_plus=torch.matmul(-self.b, self.b_recover) - torch.tensor(self.env.vmax-0.005)#-0.01
self.b_minus=torch.matmul(-self.b, self.b_recover) + torch.tensor(self.env.vmin+0.005)#+0.01
self.nonlinear_plus = torch.matmul(F.relu(torch.matmul(state, self.select_w)
+ self.b_plus.view(1, self.hidden_dim)),
torch.transpose(self.w_plus, 0, 1))*gamma
self.nonlinear_minus = torch.matmul(F.relu(torch.matmul(state, self.select_wneg)
+ self.b_minus.view(1, self.hidden_dim)),
torch.transpose(self.w_minus, 0, 1))*gamma
if self.use_gradient:
# for high voltage scenario, the reactive power injection is negative
x_high_voltage = torch.tanh(self.nonlinear_plus)*\
(torch.ones_like(last_action)*self.lower_bound_Q-last_action)*self.alpha*0.98
# for low voltage scenario, the reactive power injection is positive
x_low_voltage = -torch.tanh(self.nonlinear_minus)*\
(torch.ones_like(last_action)*self.upper_bound_Q-last_action)*self.alpha*0.98
else:
# x_high_voltage = -self.nonlinear_plus
# x_low_voltage = self.nonlinear_minus
# for high voltage scenario, the reactive power injection is negative
x_high_voltage = torch.tanh(self.nonlinear_plus)*\
(torch.ones_like(last_action)*self.lower_bound_Q-last_action)*self.alpha
# for low voltage scenario, the reactive power injection is positive
x_low_voltage = -torch.tanh(self.nonlinear_minus)*\
(torch.ones_like(last_action)*self.upper_bound_Q-last_action)*self.alpha
# x = (self.nonlinear_plus+self.nonlinear_minus) #previous version
gradient = self.node_cost*last_action + torch.square(state) - torch.ones_like(state)
if not self.use_gradient:
gradient = 0
x = x_high_voltage + x_low_voltage
x -= gradient
if self.use_gradient:
x = self.safe_flow(x,last_action)
return x
def safe_flow(self, action,last_Q):
action=torch.maximum(self.alpha*(self.lower_bound_Q-last_Q),action)
action=torch.minimum(self.alpha*(self.upper_bound_Q-last_Q),action)
return action
def get_action(self, state, last_action,gamma=1):
state = torch.FloatTensor(state).unsqueeze(0).to(self.device)
last_action = torch.FloatTensor(last_action).unsqueeze(0).to(self.device)
action = self.forward(state, last_action,gamma)
return action.detach().cpu().numpy()[0]
# standard ddpg policy network
class PolicyNetwork(nn.Module):
def __init__(self, env, obs_dim, action_dim, hidden_dim, \
up=1.0,low=-1.0, alpha=0.6, node_cost = 0.1,\
use_gradient=True, safe_flow = True,\
init_w=3e-3):
super(PolicyNetwork, self).__init__()
use_cuda = torch.cuda.is_available()
self.device = torch.device("cuda" if use_cuda else "cpu")
#parameters for safe flow
self.upper_bound_Q = up
self.lower_bound_Q = low
self.alpha = alpha
self.node_cost = node_cost
self.use_gradient = use_gradient
self.use_safe_flow = safe_flow
self.env = env
self.linear1 = nn.Linear(obs_dim, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, action_dim)
self.linear3.weight.data.uniform_(-init_w, init_w)
self.linear3.bias.data.uniform_(-init_w, init_w)
def forward(self, state, last_action=0):
state.requires_grad = True
x = torch.relu(self.linear1(state))
x = torch.relu(self.linear2(x))
x = self.linear3(x)
gradient = self.node_cost*last_action + torch.square(state) - torch.ones_like(state)
if not self.use_gradient:
gradient = 0
x -= gradient
x = self.safe_flow(x,last_action)
return x
def safe_flow(self, action,last_Q):
action=torch.maximum(self.alpha*(self.lower_bound_Q-last_Q),action)
action=torch.minimum(self.alpha*(self.upper_bound_Q-last_Q),action)
return action
def get_action(self, state, last_action=0):
state = torch.FloatTensor(state).unsqueeze(0).to(self.device)
last_action = torch.FloatTensor(last_action).unsqueeze(0).to(self.device)
action = self.forward(state,last_action)
return action.detach().cpu().numpy()[0]
# linear
class LinearPolicy(nn.Module):
def __init__(self, env, ph_num,\
up=1.0,low=-1.0, alpha=0.6, node_cost = 0.1,\
use_gradient=True, safe_flow = True):
super(LinearPolicy, self).__init__()
use_cuda = torch.cuda.is_available()
self.device = torch.device("cuda" if use_cuda else "cpu")
#parameters for safe flow
self.upper_bound_Q = up
self.lower_bound_Q = low
self.alpha = alpha
self.node_cost = node_cost
self.use_gradient = use_gradient
self.use_safe_flow = safe_flow
self.env = env
slope =torch.ones(1, requires_grad=True).to(self.device)
self.slope = torch.nn.Parameter(slope)
self.ph_num = ph_num
def forward(self, state, last_action=0):
state.requires_grad = True
x_plus = torch.maximum(state-1.03, torch.zeros_like(state).to(self.device))*torch.square(self.slope)
x_minus = torch.maximum(0.97-state, torch.zeros_like(state).to(self.device))*torch.square(self.slope)
if self.use_safe_flow:
# for high voltage scenario, the reactive power injection is negative
x_high_voltage = torch.tanh(x_plus)*\
(torch.ones_like(last_action)*self.lower_bound_Q-last_action)*0.98*self.alpha
# for low voltage scenario, the reactive power injection is positive
x_low_voltage = torch.tanh(x_minus)*\
(torch.ones_like(last_action)*self.upper_bound_Q-last_action)*0.98*self.alpha
else:
x_high_voltage = -x_plus
x_low_voltage = x_minus
# x = (self.nonlinear_plus+self.nonlinear_minus) #previous version
gradient = self.node_cost*last_action + torch.square(state) - torch.ones_like(state)
if not self.use_gradient:
gradient = 0
x = (x_high_voltage + x_low_voltage)*0
x -= gradient
x = self.safe_flow(x,last_action)
return x
def safe_flow(self, action,last_Q):
action=torch.maximum(self.alpha*(self.lower_bound_Q-last_Q),action)
action=torch.minimum(self.alpha*(self.upper_bound_Q-last_Q),action)
return action
def get_action(self, state, last_action):
state = torch.FloatTensor(state).unsqueeze(0).to(self.device)
last_action = torch.FloatTensor(last_action).unsqueeze(0).to(self.device)
action = self.forward(state, last_action)
return action.detach().cpu().numpy()[0]
# value network
class ValueNetwork(nn.Module):
def __init__(self, obs_dim, action_dim, hidden_dim, init_w=3e-3):
super(ValueNetwork, self).__init__()
self.linear1 = nn.Linear(obs_dim + action_dim, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, 1)
self.linear3.weight.data.uniform_(-init_w, init_w)
self.linear3.bias.data.uniform_(-init_w, init_w)
def forward(self, state, action):
x = torch.cat((state, action), dim=1)
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
x = self.linear3(x)
return x
class ReplayBuffer:
def __init__(self, capacity):
self.capacity = capacity
self.buffer = []
self.position = 0
def push(self, state, action, reward, next_state, done):
if len(self.buffer) < self.capacity:
self.buffer.append(None)
self.buffer[self.position] = (state, action, reward, next_state, done)
self.position = (self.position + 1) % self.capacity
def sample(self, batch_size):
batch = random.sample(self.buffer, batch_size)
state, action, reward, next_state, done = map(np.stack, zip(*batch))
return state, action, reward, next_state, done
def __len__(self):
return len(self.buffer)
class ReplayBufferPI:
def __init__(self, capacity):
self.capacity = capacity
self.buffer = []
self.position = 0
def push(self, state, action, last_action, reward, next_state, done):
if len(self.buffer) < self.capacity:
self.buffer.append(None)
self.buffer[self.position] = (state, action, last_action, reward, next_state, done)
self.position = (self.position + 1) % self.capacity
def sample(self, batch_size):
batch = random.sample(self.buffer, batch_size)
state, action, last_action, reward, next_state, done = map(np.stack, zip(*batch))
return state, action, last_action, reward, next_state, done
def __len__(self):
return len(self.buffer)