-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathargsParser.py
53 lines (43 loc) · 2.79 KB
/
argsParser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Args parser: define and parse all runtime settings
# by: Jiayu Yang
# date: 2019-10-02
import argparse
def getArgsParser():
parser = argparse.ArgumentParser(description='Cost Volume Pyramid Based Depth Inference for Multi-View Stereo')
# General settings
parser.add_argument('--info', default='None', help='Info about current run')
parser.add_argument('--mode', default='train', help='train or test ro validation', choices=['train', 'test', 'val'])
# Data settings
parser.add_argument('--dataset_root', help='path to dataset root')
parser.add_argument('--imgsize', type=int, default=128, choices=[128,1200], help='height of input image')
parser.add_argument('--nsrc', type=int, default=2, help='number of src views to use')
parser.add_argument('--nscale', type=int, default=5, help='number of scales to use')
# Training settings
parser.add_argument('--epochs', type=int, default=28, help='number of epochs to train')
parser.add_argument('--lr', type=float, default=0.001, help='learning rate')
parser.add_argument('--lrepochs', type=str, default="10,12,14,20:2", help='epoch ids to downscale lr and the downscale rate')
parser.add_argument('--wd', type=float, default=0.0, help='weight decay')
parser.add_argument('--batch_size', type=int, default=1, help='train batch size')
parser.add_argument('--summary_freq', type=int, default=1, help='print and summary frequency')
parser.add_argument('--save_freq', type=int, default=1, help='save checkpoint frequency')
parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed')
parser.add_argument('--loss_function', default='sl1', help='which loss function to use', choices=['sl1','mse'])
# Checkpoint settings
parser.add_argument('--loadckpt', type=str, default='', help='load a specific checkpoint')
parser.add_argument('--logckptdir', default='./checkpoints/debug', help='the directory to save checkpoints/logs')
parser.add_argument('--loggingdir', default='./logs/', help='the directory to save logging outputs')
parser.add_argument('--resume', type=int, default=0, help='continue to train the model')
# Evaluation settings
parser.add_argument('--outdir', default='./outputs/debug/', help='the directory to save depth outputs')
parser.add_argument('--eval_visualizeDepth', type=int, default=1)
parser.add_argument('--eval_prob_filtering', type=int, default=0)
parser.add_argument('--eval_prob_threshold', type=float, default=0.99)
parser.add_argument('--eval_shuffle', type=int, default=0)
return parser
def checkArgs(args):
# Check if the settings is valid
assert args.mode in ["train", "val", "test"]
if args.resume:
assert len(args.loadckpt) == 0
if args.loadckpt:
assert args.resume is 0