-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathvignette9.Rmd
481 lines (364 loc) · 20.4 KB
/
vignette9.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
---
title: 'Correlation structures for latent variables and row effects'
author: "Jenni Niku"
date: "2024-09-24"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Correlation structures for latent variables and row effects}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
<!-- This is pre-computed vignette -->
In this example we demonstrate how to set correlation structures for latent variables and random effects in **gllvm**. The species abundances are often correlated in time or spatially in community ecology. In **gllvm**, such correlation structures can now be set either for latent variables or comunity level random row effects.
Denote the abundance of the $j$th species ($j\in \{1,\dots, p\}$) at the $i$th site ($i\in \{1,\dots, n\}$) as $y_{ij}$. A set of k environmental variables, or experimental treatments, may also be recorded at each site and stored in the vector $\boldsymbol{x}_i = (x_{i1}, ..., x_{ik})$. A common form for the GLLVM is then defined for the mean abundance $\mu_{ij}$:
$$g(\mu_{ij}) = \eta_{ij} = r_{s_a(i)} + \beta_{0j} + \boldsymbol{x}_i'\boldsymbol{\beta}_j + \boldsymbol{u}_{s_u(i)}'\boldsymbol{\theta}_j,$$
Now we can specify a correlation structure for latent variables $\boldsymbol{u}_{s_u(i)} = ({u}_{1,s_u(i)}, \dots, {u}_{d,s_u(i)})'$ ($d=$ number of latent variables, defined by `num.lv` in **gllvm**) and/or community level row effects $r_{s_r(i)}$. The subscripts $s_u(i)$ defines the structure of the latent variables. For instance, assume that we have a hierarchical sampling design with $n_s<n$ sites and sites are sampled $n_t$ times in consecutive years. Thus we could want to include a site level latent variables such that $s_u(i) = k$ if sampling unit $i$ is from site $k$ ($k\in \{1,\dots, n_s\}$). Similarly, we can set a structure for the row effects defining subscript $s_r(i)$, eg. for time $s_r(i) = t$ if sampling unit $i$ is from sampling year $t$ ($t\in \{1,\dots, n_t\}$). Then we can define the correlation structures for latent variables and/or row effects: denote $\boldsymbol{u}_{q.} = (u_{q1}, ..., u_{qn_s})$
$$
{u}_{q.} \sim N(\boldsymbol{0}, \Sigma_q), \, q=1,\dots, d.
$$
The covariance matrix $\Sigma_q$ defines the correlation structure and has unit variances on diagonal. The options are identity (independent), AR(1) correlation, exponentially decaying correlation structure and Matern correlation. Currently we can only use the same structure for all latent variables $q=1,\dots,d$, but the parameters defining the strength of the correlation is estimated uniquely for each latent variable.
Similarly, we can define the correlation structure for random row effect, denote $\boldsymbol{r} = (r_{1}, ..., r_{n_t})$, and set
$$
{r} \sim N(\boldsymbol{0}, \Sigma_r),
$$
where the covariance matrix $\Sigma_r$ is a $n_t \times n_t$ matrix and defines the correlation structure for random row effect. For row effects we have the same options as we have for latent variables. The structure for the row effects can be different from the structure of the latent variables and this is illustrated in the case study below.
As an example, we use time series of sessile algal and invertebrate species from permanent transects (Arkema et al. 2009, @SBCLTER2023). Data consists of percent cover of 132 species from 11 sites which each have 2-8 transects, yearly recorded from 2000 to 2021. It also includes measurements of the environment; the number of stripes of giant kelp and percent rock. In total, data has 836 sampling units.
``` r
library(gllvm)
```
``` r
data("kelpforest")
Yabund <- kelpforest$Y
Xenv <- kelpforest$X
SPinfo <- kelpforest$SPinfo
```
Species percent cover matrix is in `Yabund`, for the analyses we consider only sessile invertebrates and include species observed at least 10 times. The rarest species are modeled as a sum.
``` r
Yabund[1:10,1:20]
```
```
## AB AL AMZO ANSP AR ARUD AS ATM AU BA BAEL BCAL BF BLD BN
## 1 0 0 0 0.0125 0 0 0.1125 0 0.0125 0.0000 0 0 0.0000 0 0.0125
## 2 0 0 0 0.0000 0 0 0.0000 0 0.0000 0.0000 0 0 0.0125 0 0.0000
## 3 0 0 0 0.0000 0 0 0.0750 0 0.0000 0.0000 0 0 0.0000 0 0.0000
## 4 0 0 0 0.0000 0 0 0.0125 0 0.0000 0.0000 0 0 0.0125 0 0.0000
## 5 0 0 0 0.0000 0 0 0.0000 0 0.0000 0.0000 0 0 0.0000 0 0.0000
## 6 0 0 0 0.0000 0 0 0.0000 0 0.0000 0.0000 0 0 0.0000 0 0.0000
## 7 0 0 0 0.0000 0 0 0.0000 0 0.0000 0.0000 0 0 0.0000 0 0.0000
## 8 0 0 0 0.0000 0 0 0.0000 0 0.0000 0.0000 0 0 0.0000 0 0.0000
## 9 0 0 0 0.0000 0 0 0.0500 0 0.0000 0.0125 0 0 0.0000 0 0.0000
## 10 0 0 0 0.0000 0 0 0.0250 0 0.0000 0.0000 0 0 0.0125 0 0.0000
## BO BOW BPSE BR BRA
## 1 0 0 0 0.0250 0.0375
## 2 0 0 0 0.0250 0.0125
## 3 0 0 0 0.0375 0.0000
## 4 0 0 0 0.0000 0.0000
## 5 0 0 0 0.0125 0.0000
## 6 0 0 0 0.0000 0.0125
## 7 0 0 0 0.0000 0.0000
## 8 0 0 0 0.0000 0.0000
## 9 0 0 0 0.1000 0.0000
## 10 0 0 0 0.1000 0.0875
```
``` r
Yinvert <- Yabund[SPinfo$GROUP == "INVERT"]
Yinvert10 = Yinvert[,colSums(Yinvert>0, na.rm = TRUE)>9]
# Sum species that were observed less than 9 times,
Yinvert10$Sum_inv = rowSums(Yinvert[,(colSums(Yinvert>0, na.rm = TRUE)<=9)], na.rm = TRUE)
```
There is information about the species:
``` r
head(SPinfo)
```
```
## SP_CODE GROUP COMMON_NAME SCIENTIFIC_NAME TAXON_KINGDOM
## 1 AB INVERT Coarse Sea Fir Hydroid Abietinaria spp. Animalia
## 2 AL INVERT Aggregating cup Coral Astrangia haimei Animalia
## 3 AMZO ALGAE <NA> Amphiroa beauvoisii Plantae
## 4 ANSP INVERT Aggregating anemone Anthopleura spp. Animalia
## 5 AR INVERT Sand Tunicate Eudistoma psammion Animalia
## 6 ARUD INVERT Octocoral Discophyton rudyi Animalia
## TAXON_PHYLUM TAXON_CLASS TAXON_ORDER TAXON_FAMILY TAXON_GENUS
## 1 Cnidaria Hydrozoa Leptothecata Sertulariidae Abietinaria
## 2 Cnidaria Anthozoa Scleractinia Rhizangiidae Astrangia
## 3 Rhodophyta Florideophyceae Corallinales Lithophyllaceae Amphiroa
## 4 Cnidaria Anthozoa Actiniaria Actiniidae Anthopleura
## 5 Chordata Ascidiacea Aplousobranchia Polycitoridae Eudistoma
## 6 Cnidaria Anthozoa Alcyonacea Alcyoniidae Discophyton
```
``` r
SPinfo10 = SPinfo[SPinfo$SP_CODE %in% colnames(Yinvert10),]
SPinfo10 = rbind(SPinfo10,c("Sum_inv","INVERT", rep(NA, ncol(SPinfo10)-2)))
```
And finally, information about the study design (site name, year, transect index) and environmental coefficients (average number of kelp fronds, percent rock). The distribution of kelp fronds is very skewed to the right so a log of the number of kelp fronds is used as a covariate instead. In addition, covariates are scaled.
``` r
head(Xenv)
```
```
## SITE YEAR TRANSECT KELP_FRONDS PERCENT_ROCKY
## 1 ABUR 2001 1 13.8750 35.0
## 2 ABUR 2001 2 0.0000 37.5
## 3 ABUR 2002 1 8.5125 10.0
## 4 ABUR 2002 2 0.3875 2.5
## 5 ABUR 2003 1 0.6000 0.0
## 6 ABUR 2003 2 0.0000 0.0
```
``` r
par(mfrow=c(1,2))
hist(Xenv$KELP_FRONDS, main = "KELP FRONDS")
Xenv$logKELP_FRONDS = log(Xenv$KELP_FRONDS+1)
Xenv$logKELP_FRONDSsc = scale(Xenv$logKELP_FRONDS)
Xenv$PERCENT_ROCKYsc = scale(Xenv$PERCENT_ROCKY)
hist(Xenv$logKELP_FRONDSsc, main = "log of KELP FRONDS")
```
<div class="figure" style="text-align: center">
<img src="Xcovar-1.png" alt="plot of chunk Xcovar" />
<p class="caption">plot of chunk Xcovar</p>
</div>
For modeling percent cover data, \texttt{gllvm} has three options, beta for values (0,1), ordered beta for [0,1] and beta hurdle model for [0,1). Here we use beta-hurdle response model.
## Structured and correlated community level random row effects
The structure for community level row effects can be defined using argument `row.eff` and defining the study design using argument `studyDesign`. The structure is defined by common formula interface; eg. `row.eff = ~(1|site)` and `site` factor in a `data.frame` given in argument `studyDesign` defines site level random effects. There are four correlation structures available in \texttt{gllvm}, AR(1) `corAR1`, compound symmetry `corCS`, exponentially decaying `corExp` and Matern correlation `corMatern`. If one would like to set eg. spatial correlation structure for the site level random effects, it could be defined for instance by `row.eff = ~corExp(1|site)` and spatial coordinates given to `dist` as a matrix. Multiple row effect structures are allowed.
In the next example, we attempt to model species abundances correlation in time using AR(1) correlated community level random effect for sampling year as well as site level row effects. Latent variables are left out from this model for now.
``` r
# Define the study design, now we need year and site
studyDesign = data.frame(year = factor(Xenv$YEAR), site = factor(Xenv$SITE))
# Set common shape parameter of beta distribution for different species (optional)
shapeForm = rep(1, ncol(Yinvert10))
```
``` r
# Fit model with AR(1) correlated random effect for sampling year
ftRowAR <- gllvm(Yinvert10, Xenv, family = "betaH",
formula = ~ logKELP_FRONDSsc + PERCENT_ROCKYsc,
studyDesign = studyDesign,
row.eff = ~ (1|site) + corAR1(1|year),
num.lv = 0, disp.formula = shapeForm)
```
``` r
ftRowAR
```
```
## Call:
## gllvm(y = Yinvert10, X = Xenv, formula = ~logKELP_FRONDSsc +
## PERCENT_ROCKYsc, family = "betaH", num.lv = 0, studyDesign = studyDesign,
## row.eff = ~(1 | site) + corAR1(1 | year), disp.formula = shapeForm)
## family:
## [1] "betaH"
## method:
## [1] "VA"
##
## log-likelihood: -1448.781
## Residual degrees of freedom: 48907
## AIC: 3731.561
## AICc: 3738.689
## BIC: 7403.732
```
If we look at the estimates, sd of the random effect for site is 0.106 and for year is 0.037 and AR(1) correlation between two consecutive years is 0.57. See below the parameter values and the row effects for years
``` r
# sds for random row effects and Correlation for consecutive years
ftRowAR$params$sigma
```
```
## site year yearrho
## 0.10601458 0.03676497 0.57861515
```
``` r
# Plot random effects and 95% predicted envelope
rowSite = ftRowAR$params$row.params[names(ftRowAR$params$row.params) == "site"]
years = matrix(as.numeric(levels(studyDesign$year)))
rowYear = ftRowAR$params$row.params[names(ftRowAR$params$row.params) == "year"]
# Calculate prediction errors for row effects:
predLVR = getPredictErr(ftRowAR)
# prediction errors for site effects
seSite = predLVR$row.effects[[1]]
# prediction errors for year effects
seYear = predLVR$row.effects[[2]]
# Plot:
par(mfrow=c(1,2))
plot(rowSite, ylim = range(rowSite) + c(-1.96,1.96)*max(abs(seSite)), main = "Random effect: site")
lines(rowSite - 1.96*seSite, col=2)
lines(rowSite + 1.96*seSite, col=2)
plot(years, rowYear, ylim = range(rowYear) + c(-1.96,1.96)*max(abs(seYear)), main = "Random effect: year")
lines(years, rowYear - 1.96*seYear, col=2)
lines(years, rowYear + 1.96*seYear, col=2)
```
<div class="figure" style="text-align: center">
<img src="plotrow-1.png" alt="plot of chunk plotrow" />
<p class="caption">plot of chunk plotrow</p>
</div>
The random effect for year represents the average trend of the all species abundances over the years which is not explained by the covariates.
To evaluate how much of the variation random effects and covariates are able to explain, calculate variance partitioning for the model. The random effect for year explains on average only 1.6% and the random effect for site 13.9% of the variation when modeling the probability of the presence, while conditional on the presence of the species, random year explains on average 5.9% and random site 52.5% of the variation of the coverage.
``` r
VP1 <- varPartitioning(ftRowAR)
plotVP(VP1, args.legend = list(cex=0.7), col=hcl.colors(5, "Roma"))
```
<div class="figure" style="text-align: center">
<img src="VP1-1.png" alt="plot of chunk VP1" />
<p class="caption">plot of chunk VP1</p>
</div>
## Structured and correlated latent variables
### Structured latent variables
In the previous example, we did not include latent variables in the model, but let's focus on them now. Similarly to community level row effects we can now set a structure for the latent variables as well using argument `lvCor`. For instance, we could like to account the variation in transects and sites and possible missing environmental covariates that affect the species abundances. So let's include in the model also transect level latent variables, leave random effect for site out:
``` r
# Define the study design, now we need year and site x transect
Xenv$STRANSECT = factor(paste(Xenv$SITE,Xenv$TRANSECT, sep = ""))
studyDesign = data.frame(year = factor(Xenv$YEAR), stransect = factor(Xenv$STRANSECT))
# Fit model with AR(1) correlated random effect for sampling year
# and two transect level latent variable (two LVs model was better than 1 LV)
# Different starting values can be tested but zero starting values worked best in this case:
# (This can take a few minutes ~2-5)
```
``` r
ftRowAR_lv2 <- gllvm(Yinvert10, Xenv, family = "betaH",
formula = ~ logKELP_FRONDSsc + PERCENT_ROCKYsc,
studyDesign = studyDesign, row.eff = ~ corAR1(1|year),
num.lv = 2, lvCor = ~ (1|stransect),
disp.formula = shapeForm)
```
``` r
ftRowAR_lv2
```
```
## Call:
## gllvm(y = Yinvert10, X = Xenv, formula = ~logKELP_FRONDSsc +
## PERCENT_ROCKYsc, family = "betaH", num.lv = 2, lvCor = ~(1 |
## stransect), studyDesign = studyDesign, row.eff = ~corAR1(1 |
## year), disp.formula = shapeForm)
## family:
## [1] "betaH"
## method:
## [1] "VA"
##
## log-likelihood: 793.3203
## Residual degrees of freedom: 48673
## AIC: -284.6406
## AICc: -267.1993
## BIC: 5448.174
```
Below we plot the ordination, which is now at transect level, not sample level.
``` r
layout(matrix(c(1,2),1))
par(mar=c(4,4,3,1))
# Color code for sites
colSite = t(model.matrix(~studyDesign$stransect-1))%*% as.numeric(factor(Xenv$SITE))/colSums(model.matrix(~studyDesign$stransect-1))
# Ordination of sites+transect/Latent variables with 95% prediction regions
ordiplot(ftRowAR_lv2, predict.region = "sites", s.colors = colSite)
# Random effect for years:
years = matrix( as.numeric(levels(studyDesign$year)))
rowYear2 = ftRowAR_lv2$params$row.params
years = matrix( as.numeric(levels(studyDesign$year)))
predLVR = getPredictErr(ftRowAR_lv2)
plot(years, rowYear2, ylim = range(rowYear2) +
c(-1.96,1.96)*max(abs(predLVR$row.effects[[1]])),
main = "Random effect year", ylab = "")
lines(years, rowYear2 - 1.96*predLVR$row.effects[[1]], col=2)
lines(years, rowYear2 + 1.96*predLVR$row.effects[[1]], col=2)
```
<div class="figure" style="text-align: center">
<img src="ordiplot1-1.png" alt="plot of chunk ordiplot1" />
<p class="caption">plot of chunk ordiplot1</p>
</div>
The variance partitioning for the model shows that random effect for year explains on average only 0.6% of the variation when modeling the probability of the presence, while conditional on the presence of the species, random year explains on average 20.5% of the variation of the coverage. On the other hand, transect level latent variables can explain a total of 60% of the variation in presence-absence model, while for coverage model the proportion is smaller, around 40%.
``` r
VP2 <- varPartitioning(ftRowAR_lv2)
plotVP(VP2, args.legend = list(cex=0.7), col=hcl.colors(5, "Roma"))
```
<div class="figure" style="text-align: center">
<img src="VP2-1.png" alt="plot of chunk VP2" />
<p class="caption">plot of chunk VP2</p>
</div>
### Correlated latent variables
It is also possible to specify a correlation structure for latent variables. An optimal choice would be to continue the analysis by setting spatial correlation structure for the sites or the transects, but the data do not have information about the coordinates. Instead, we illustrate this functionality below by setting AR(1) correlated latent variable for years. The variability between sites is now taken into account with random row effect.
Regarding the model estimation method, by default package uses variational approximation (VA) method. VA-method approximates the posterior distribution of the random effects and latent variables with so called a variational covariance matrix. The structure of the variational covariance can affect the accuracy of the method. For example, an unstuctured variational covariance matrix (default) may lead to more accurate results, but as a downside, it can be slow. If the number of correlated levels, eg. sites or time points, is small, it does not matter that much which structure is chosen, but for large number of correlated levels the difference in computation time may be significant. For correlated LVs there are few different options, as a alternatives to the default choice we suggest either `Lambda.struc = "bdNN"` or `Lambda.struc = "UNN"` methods (these are the same if number of correlated LVs is 1). The complexity of those structures can be modified with argument `NN` which can be between 2 and the number of levels of the variable defining correlation structure -1 (eg. number of spatially correlated sites -1 or number of correlated time points -1).
For this example, we set `Lambda.struc = "bdNN"` and `NN=5`.
``` r
# Check first the number of correlated levels:
levels(studyDesign$year)
# Number of levels = number of years = 21, so NN can be at most 21-1 = 20
# And then bdNN structure would be same as unstructured variational covariance matrix
# In the example below, we set NN = 5. For this example,
# larger number does not improve the model fit anymore.
```
``` r
# Fit model with AR(1) correlated latent variables for sampling year
# and transect level random row effect
# (This can take a few minutes)
system.time(ftRow_lv1AR <- gllvm(Yinvert10, Xenv, family = "betaH",
formula = ~ logKELP_FRONDSsc + PERCENT_ROCKYsc,
studyDesign = studyDesign, row.eff = ~ (1|stransect),
num.lv = 1, lvCor = ~ corAR1(1|year),
Lambda.struc = "bdNN", NN=5, diag.iter = 0,
disp.formula = shapeForm))
```
``` r
ftRow_lv1AR
```
```
## Call:
## gllvm(y = Yinvert10, X = Xenv, formula = ~logKELP_FRONDSsc +
## PERCENT_ROCKYsc, family = "betaH", num.lv = 1, lvCor = ~corAR1(1 |
## year), studyDesign = studyDesign, row.eff = ~(1 | stransect),
## disp.formula = shapeForm, Lambda.struc = "bdNN", NN = 5,
## diag.iter = 0)
## family:
## [1] "betaH"
## method:
## [1] "VA"
##
## log-likelihood: -922.7426
## Residual degrees of freedom: 48790
## AIC: 2913.485
## AICc: 2925.196
## BIC: 7615.978
```
``` r
# Correlation for consecutive years (LV)
ftRow_lv1AR$params$rho.lv
```
```
## rho.lv1
## 0.9046357
```
``` r
# sd of random row effects for transects
ftRow_lv1AR$params$sigma
```
```
## stransect
## 0.1433812
```
The correlation for consequtive years is strong 0.90.
Below we view the species specific yearly trends in the products of latent variables and loadings.
``` r
layout(matrix(c(1,2),1))
par(mar=c(4,4,3,1))
# When variation between sites was taken into account, there is no clear common trend
LVloadings = ftRow_lv1AR$lvs%*%t(ftRow_lv1AR$params$theta%*%diag(ftRow_lv1AR$params$sigma.lv,1))
years = matrix( as.numeric(levels(studyDesign$year)))
matplot(years, LVloadings[,1:ncol(Yinvert10), drop=FALSE], type = "l", ylab = "LV*Loadings", main = "Beta")
matplot(years, LVloadings[,-(1:ncol(Yinvert10)), drop=FALSE], type = "l", ylab = "LV*Loadings", main = "Hurdle")
```
<div class="figure" style="text-align: center">
<img src="lvAR-1.png" alt="plot of chunk lvAR" />
<p class="caption">plot of chunk lvAR</p>
</div>
## References
---
references:
- id: SBCLTER2023
title: SBC LTER; Reef; Kelp Forest Community Dynamics, Cover of sessile organisms, Uniform Point Contact. Environmental Data Initiative.
author:
- family: Reed
given: D.
- family: Miller
given: R.
type: dataset
issued:
year: 2023
doi: https://doi.org/10.6073/pasta/0af1a5b0d9dde5b4e5915c0012ccf99c
publisher: Environmental Data Initiative
version: 33
accessed:
- year: 2023
month: 12
day: 01
---