-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain2.py
206 lines (180 loc) · 7.92 KB
/
train2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import torch
from torchvision import transforms
from torch.utils.data import DataLoader, random_split
from torch.utils.data.sampler import BatchSampler, RandomSampler
import torch.nn as nn
import wandb
import segmentation_models_pytorch as smp
import os
from datetime import datetime
import math
from tqdm import tqdm
from model import *
from loss import *
from dataset import *
from positionalembedding import *
np.random.seed(0)
torch.manual_seed(0)
wandb.init(project='inpaint', name='basic-2')
filepath = '/data/cornucopia/jsb212/seg-dataset/test2'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
batch_size = 4
num_epochs = 1000
lr = 0.001
pos_embedding = True
alpha = 0
beta = 0
load_pretrained = False
normalise = False
height = width = 256
now = datetime.now()
now_str = './outputs/' + now.strftime('%d-%m-%Y_%H-%M')
os.makedirs(now_str, exist_ok=True)
os.makedirs(f'{now_str}/imgs_epochs', exist_ok=True)
# Define the loss function
criterion = WeightedLoss([VGGLoss(),
nn.MSELoss(),
TVLoss(p=1)],
[1, 30, 10]).to(device) #1, 40, 10
mse = nn.MSELoss()
styleloss = StyleLoss(device=device)
criterionD = nn.BCELoss()
#Transforms
# transform_list = [
# transforms.Resize((512, 512)),
# transforms.RandomResizedCrop((512, 512)),
# transforms.RandomHorizontalFlip(),
# transforms.RandomVerticalFlip(),
# transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
# transforms.ToTensor()
# ]
img_transforms_lst = [
transforms.Resize((height, width)),
transforms.ToTensor()
]
if normalise:
img_transforms_lst.append(transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]))
invNormalise = InvNormalise(device=device)
img_transform = transforms.Compose(img_transforms_lst)
#Load data
data = ImgMaskDataset(filepath, img_transform)
# sampler = BatchSampler(
# RandomSampler(data),
# batch_size=batch_size,
# drop_last=False)
num_samples = len(data.imgs)
#num_train = int(0.8 * num_samples)
#num_val = num_samples - num_train
#train_data, val_data = random_split(data, [num_train, num_val])
train_loader = DataLoader(data, batch_size=batch_size, shuffle=True)
#val_loader = DataLoader(val_data, batch_size=batch_size, shuffle=True)
#Initialise model
model = smp.Unet(
encoder_name="mobilenet_v2",
encoder_weights="imagenet",
classes=3,
)
model.segmentation_head = InpaintingHead()
if pos_embedding:
dim = 64
pe = positionalencoding2d(dim, height, width)
pe = pe.to(device)
model.encoder.features[0][0] = nn.Conv2d(in_channels=3+dim, out_channels=32,
kernel_size=3, stride=2, padding=1)
model.to(device)
#xmodel = XModel(model=model)
#xmodel.to(device)
model_params = model.state_dict()
#modelD = Discriminator()
#initialise_model(modelD, device)
#if load_pretrained:
# model.load_state_dict(torch.load('outputs/16-02-2023_18-10/generator.pth'))
# modelD.load_state_dict(torch.load('outputs/16-02-2023_18-10/discriminator.pth'))
#num_params = sum(p.numel() for p in model.parameters())
#print(num_params)
# Define the optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
#optimizerD = torch.optim.Adam(modelD.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9995)
num_iters = math.ceil(num_samples/batch_size) * num_epochs
# Train the model
loss_val = 10000
with tqdm(total=num_iters) as pbar:
for epoch in range(num_epochs):
# Training loop
for i, (images, masks) in enumerate(train_loader):
images, masks = images.to(device), masks.to(device)
if normalise:
imagesT = invNormalise(images)
masksX = masks.unsqueeze(1).repeat(1, 3, 1, 1)
images_masked = images * masksX
if pos_embedding:
peX = pe.repeat(images_masked.shape[0], 1, 1, 1)
images_masked = torch.cat((images_masked, peX), 1).to(device)
#optimizerD.zero_grad()
# TRAIN DISCRIMINATOR: maximize log(D(x)) + log(1 - D(G(z)))
# (1) Train with all real batch: log(D(x))
#labels_real = torch.full((images.shape[0],), 1, dtype=torch.float, device=device) #label=1 true
#preds_real = modelD(images).view(-1)
#lossD = criterionD(preds_real, labels_real)
# (2) Train with all fake batch: log(1 - D(G(z)))
#outputs = model(images_masked)
#labels_fake = torch.full((images.shape[0],), 0, dtype=torch.float, device=device) #label=0 fake
#preds_fake = modelD(outputs).view(-1)
#lossD += criterionD(preds_fake, labels_fake)
#lossD.backward()
#optimizerD.step()
#TRAIN GENERATOR: maximize log(D(G(z)))
optimizer.zero_grad()
outputs = model(images_masked)
if normalise:
outputsT = invNormalise(outputs)
#preds_fake = modelD(outputs).view(-1)
#for i, output in enumerate(outputs):
# image = images[i]
# mask = masksX[i]
# output_maskselect, images_maskselect = torch.masked_select(output, mask.eq(0)), torch.masked_select(image, mask.eq(0))
# num_elements = output_maskselect.shape[0]
#outputs_maskselect, images_maskselect = torch.masked_select(outputs, masks.eq(0)), torch.masked_select(images, masks.eq(0))
#num_elements = output_maskselect.shape[0]
#output_maskselect, images_maskselect = output_maskselect.view(-1, 3, 512, 512)[:, :, :num_elements], images_maskselect.view(-1, 3, 512, 512)[:, :, :num_elements]
#print(outputs.size(), images.size())
#print(output_maskselect.size(), images_maskselect.size())
if normalise:
outputs, images = outputsT, imagesT
output_comp = images * masksX + outputs * (1-masksX) #composite output - combine nonmasked area of gt with masked area of generation
loss = criterion(outputs, images)
#loss += beta*(styleloss(outputs, images) + styleloss(output_comp, images))
#loss += alpha*criterionD(preds_fake, labels_real)
loss.backward()
optimizer.step()
pbar.update(1)
torch.cuda.empty_cache()
if epoch % 10 == 0:
save_array_as_img(array=outputs[0], filepath=f'{now_str}/imgs_epochs/epoch_{epoch}.png')
current_lr = scheduler.get_last_lr()[0]
#print("Epoch {}: Generator Train Loss: {} Discriminator Train Loss: {}".format(epoch+1, loss.item(), lossD))
#wandb.log({'Generator Train Loss': loss.item(), 'Discriminator Train Loss': lossD, 'Learning Rate': current_lr})
print("Epoch {}: Generator Train Loss: {}".format(epoch+1, loss.item()))
wandb.log({'Generator Train Loss': loss.item(), 'Learning Rate': current_lr})
if loss.item() < loss_val:
model_params = model.state_dict()
loss_val = loss.item()
scheduler.step()
# Validation loop
#with torch.no_grad():
# for i, (images, masks) in enumerate(val_loader):
# output = model(images.cuda(), masks.cuda())
# val_loss = criterion(output, images)
#print("Epoch {}: Train Loss: {}, Val Loss: {}".format(epoch+1, loss.item(), val_loss.item()))
#wandb.log({'Train Loss': loss.item(), 'Val Loss': val_loss.item()})
for i, output in enumerate(outputs):
save_array_as_img(array=output, filepath=f'{now_str}/output_{i}.png')
input = images[i]
save_array_as_img(array=input, filepath=f'{now_str}/input_{i}.png')
mask = masks[i]
save_array_as_img(array=mask, filepath=f'{now_str}/mask_{i}.png')
final_output = input * mask + output * (1-mask)
save_array_as_img(array=final_output, filepath=f'{now_str}/final_img_{i}.png')
torch.save(model_params, f'{now_str}/generator.pth')
#torch.save(modelD.state_dict(), f'{now_str}/discriminator.pth')