-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
76 lines (62 loc) · 2.53 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import torch
import torch.utils.data
from torchvision import transforms
from PIL import Image
from mask import generate_random_mask
from pathlib import Path
import numpy as np
def get_image_files(filepath):
extensions = ['png', 'jpg', 'jpeg']
result = []
for extension in extensions:
result += list(Path(filepath).glob(f'**/*.{extension}'))
return result
def save_array_as_img(array, filepath):
arr = (array.cpu().detach().numpy() * 255).astype(np.uint8)
img = Image.fromarray(arr.T)
img.save(filepath)
class ImgMaskDataset(torch.utils.data.Dataset):
def __init__(self, dataset_path, img_transform):
super(ImgMaskDataset, self).__init__()
self.img_transform = img_transform
self.imgs = get_image_files(dataset_path)
def __getitem__(self, index):
img_path = self.imgs[index]
img = Image.open(img_path)
img_t = self.img_transform(img)
mask = generate_random_mask(img_t.size()[1], img_t.size()[2], factor=0.3)
mask_t = torch.tensor(mask)
return img_t, mask_t
def __len__(self):
return len(self.imgs)
class ImgMaskDataset2(torch.utils.data.Dataset):
def __init__(self, dataset_path, img_transform):
super(ImgMaskDataset2, self).__init__()
self.img_transform = img_transform
self.imgs = get_image_files(dataset_path)
def __getitem__(self, index):
img_paths = [self.imgs[i] for i in index]
imgs = torch.Tensor()
for img_path in img_paths:
img = Image.open(img_path)
img_t = self.img_transform(img).unsqueeze(0)
imgs = torch.cat((imgs, img_t))
mask = generate_random_mask(512, 512)
mask_t = torch.tensor(mask)
mask_t = mask_t.unsqueeze(0).repeat(3,1,1).unsqueeze(0).repeat(len(index),1,1,1)
return imgs, mask_t
def __len__(self):
return len(self.imgs)
class InvNormalise(torch.nn.Module):
"Pass a batch of tensors."
def __init__(self, device):
super(InvNormalise, self).__init__()
self.device = device
self.transform = transforms.Compose([transforms.Normalize(mean = [ 0., 0., 0. ], std = [ 1/0.229, 1/0.224, 1/0.225 ]),
transforms.Normalize(mean = [ -0.485, -0.456, -0.406 ], std = [ 1., 1., 1. ])])
def forward(self, batch):
inv_tensors = []
for tensor in batch:
inv_tensor = self.transform(tensor)
inv_tensors.append(inv_tensor.to(self.device))
return torch.stack(inv_tensors).to(self.device)