-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathExamples.m
427 lines (352 loc) · 9.79 KB
/
Examples.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Multiwavelet toolbox, a toolbox for performing Multiwavelet transform %
% Copyright (C) 2022 Jozef Kromka, Ondrej Kováč %
% %
% This program is free software: you can redistribute it and/or modify %
% it under the terms of the GNU General Public License as published by %
% the Free Software Foundation, either version 3 of the License, or %
% (at your option) any later version. %
% %
% This program is distributed in the hope that it will be useful, %
% but WITHOUT ANY WARRANTY; without even the implied warranty of %
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %
% GNU General Public License for more details. %
% %
% You should have received a copy of the GNU General Public License %
% along with this program. If not, see <https://www.gnu.org/licenses/>. %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% If this software is used to make a contribution to the findings %
% published in an article, then please consider citing our conference %
% paper, from which this toolbox originates. You can find the citation at %
% https://github.com/JK-OK/Multiwavelet-toolbox %
% You can find there the contact information for authors as well. %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear;
clc;
addpath("support_functions");
% Settings
plot_results = true;
maximalized_plot = true;
%% Preparing input signals
load kobe;
in1D = normalize(kobe(1:2048)');
load woman;
in2D = im2double(uint8(X));
clear kobe map X;
% in2D = im2double(im2gray(imread("image.png")));
%% DMWT and IDMWT Example
[c11, c12, d11, d12] = DMWT(in1D, 'DGHM');
if plot_results
f = figure(1);
if maximalized_plot
f.WindowState = 'maximized';
end
t = tiledlayout(4, 1);
title(t, "DMWT and IDMWT Example");
nexttile;
plot(c11);
title("c_{11} coeficients");
xlabel("Samples");
ylabel("Amplitude");
grid on;
nexttile;
plot(c12);
title("c_{12} coeficients");
xlabel("Samples");
ylabel("Amplitude");
grid on;
nexttile;
plot(d11);
title("d_{11} coeficients");
xlabel("Samples");
ylabel("Amplitude");
grid on;
nexttile;
plot(d12);
title("d_{12} coeficients");
xlabel("Samples");
ylabel("Amplitude");
grid on;
end
out1D = IDMWT(c11, c12, d11, d12, 'DGHM');
fprintf("SNR after IDMWT: %.3f\n", snr(in1D, in1D - out1D));
%% MLDMWT and MLIDMWT Example
coef = MLDMWT(in1D, 'BAT02', 3);
if plot_results
f = figure(2);
if maximalized_plot
f.WindowState = 'maximized';
end
t = tiledlayout(8, 1);
title(t, "MLDMWT and MLIDMWT Example");
nexttile;
plot(coef{1});
title("c_{31} coeficients");
xlabel("Samples");
ylabel("Amplitude");
grid on;
nexttile;
plot(coef{2});
title("c_{32} coeficients");
xlabel("Samples");
ylabel("Amplitude");
grid on;
nexttile;
plot(coef{3});
title("d_{31} coeficients");
xlabel("Samples");
ylabel("Amplitude");
grid on;
nexttile;
plot(coef{4});
title("d_{32} coeficients");
xlabel("Samples");
ylabel("Amplitude");
grid on;
nexttile;
plot(coef{5});
title("d_{21} coeficients");
xlabel("Samples");
ylabel("Amplitude");
grid on;
nexttile;
plot(coef{6});
title("d_{22} coeficients");
xlabel("Samples");
ylabel("Amplitude");
grid on;
nexttile;
plot(coef{7});
title("d_{11} coeficients");
xlabel("Samples");
ylabel("Amplitude");
grid on;
nexttile;
plot(coef{8});
title("d_{12} coeficients");
xlabel("Samples");
ylabel("Amplitude");
grid on;
end
out1D = MLIDMWT(coef, 'BAT02', 3);
fprintf("SNR after MLIDMWT: %.3f\n", snr(in1D, in1D - out1D));
%% TMLDMWT and TMLIDMWT Example
coef = TMLDMWT(in1D, 'CL02', 2);
if plot_results
f = figure(3);
if maximalized_plot
f.WindowState = 'maximized';
end
t = tiledlayout(8, 1);
title(t, "TMLDMWT and TMLIDMWT Example");
nexttile;
plot(coef{1});
title("cc_{11} coeficients");
xlabel("Samples");
ylabel("Amplitude");
grid on;
nexttile;
plot(coef{2});
title("cc_{12} coeficients");
xlabel("Samples");
ylabel("Amplitude");
grid on;
nexttile;
plot(coef{3});
title("cd_{11} coeficients");
xlabel("Samples");
ylabel("Amplitude");
grid on;
nexttile;
plot(coef{4});
title("cd_{12} coeficients");
xlabel("Samples");
ylabel("Amplitude");
grid on;
nexttile;
plot(coef{5});
title("cd_{11} coeficients");
xlabel("Samples");
ylabel("Amplitude");
grid on;
nexttile;
plot(coef{6});
title("cd_{11} coeficients");
xlabel("Samples");
ylabel("Amplitude");
grid on;
nexttile;
plot(coef{7});
title("dd_{11} coeficients");
xlabel("Samples");
ylabel("Amplitude");
grid on;
nexttile;
plot(coef{8});
title("dd_{12} coeficients");
xlabel("Samples");
ylabel("Amplitude");
grid on;
end
out1D = TMLIDMWT(coef, 'CL02', 2);
fprintf("SNR after TMLIDMWT: %.3f\n", snr(in1D, in1D - out1D));
%% DMWT2D and IDMWT2D Example
out2D = DMWT2D(in2D, 'DB2');
if plot_results
f = figure(4);
if maximalized_plot
f.WindowState = 'maximized';
end
t = tiledlayout(2, 1);
title(t, "DMWT2D and IDMWT2D Example");
nexttile;
imshow(in2D);
title("Original image");
nexttile;
imshow(abs(out2D));
title("Transformed image");
end
out2D = IDMWT2D(out2D, 'DB2');
[psnr2D, snr2D] = psnr(out2D, in2D);
fprintf("PSNR after IDMWT2D: %.3f\nSNR after IDMWT2D: %.3f\n", psnr2D, snr2D);
%% MLDMWT2D and MLIDMWT2D Example
out2D = MLDMWT2D(in2D, 'SA4', 3);
if plot_results
f = figure(5);
if maximalized_plot
f.WindowState = 'maximized';
end
t = tiledlayout(2, 1);
title(t, "MLDMWT2D and MLIDMWT2D Example");
nexttile;
imshow(in2D);
title("Original image");
nexttile;
imshow(abs(out2D));
title("Transformed image");
end
out2D = MLIDMWT2D(out2D, 'SA4', 3);
[psnr2D, snr2D] = psnr(out2D, in2D);
fprintf("PSNR after MLIDMWT2D: %.3f\nSNR after MLIDMWT2D: %.3f\n", psnr2D, snr2D);
%% DMWTMatrix Example 1D signal
n = size(in1D, 2);
mat = DMWTMatrix(n, 'HAAR', true);
out1D = (mat * in1D')';
if plot_results
f = figure(6);
if maximalized_plot
f.WindowState = 'maximized';
end
t = tiledlayout(4, 1);
title(t, "DMWTMatrix Example 1D signal");
nexttile;
plot(out1D(1:n/4));
title("c_{11} coeficients");
xlabel("Samples");
ylabel("Amplitude");
grid on;
nexttile;
plot(out1D(n/4+1:n/2));
title("c_{12} coeficients");
xlabel("Samples");
ylabel("Amplitude");
grid on;
nexttile;
plot(out1D(n/2+1:3*n/4));
title("d_{11} coeficients");
xlabel("Samples");
ylabel("Amplitude");
grid on;
nexttile;
plot(out1D(3*n/4+1:end));
title("d_{12} coeficients");
xlabel("Samples");
ylabel("Amplitude");
grid on;
end
out1D = (mat' * out1D')';
fprintf("SNR after transform using matrix: %.3f\n", snr(in1D, in1D - out1D));
%% DMWTMatrix Example 2D signal
n = size(in2D, 2);
mat = DMWTMatrix(n, 'DB4', true);
out2D = mat * in2D * mat';
if plot_results
f = figure(7);
if maximalized_plot
f.WindowState = 'maximized';
end
t = tiledlayout(2, 1);
title(t, "DMWTMatrix Example 2D signal");
nexttile;
imshow(in2D);
title("Original image");
nexttile;
imshow(abs(out2D));
title("Transformed image");
end
out2D = mat' * out2D * mat;
[psnr2D, snr2D] = psnr(out2D, in2D);
fprintf("PSNR after transform using matrix: %.3f\nSNR after transform using matrix: %.3f\n", psnr2D, snr2D);
%% getMultiWaveletAproximation and plotMultiWavelet Example
multiwavelet = loadMW('CL02');
[phi, psi, phix, psix] = getMultiWaveletAproximation(multiwavelet.g0, multiwavelet.g1, multiwavelet.r, 8);
if plot_results
phi1 = phi(1, :);
phi2 = phi(2, :);
psi1 = psi(1, :);
psi2 = psi(2, :);
% Calculate max and min of all functions for bettwer view
maxp = max([phi1, phi2, psi1, psi2]) + 0.1;
minp = min([phi1, phi2, psi1, psi2]) - 0.1;
f = figure(8);
if maximalized_plot
f.WindowState = 'maximized';
end
t = tiledlayout(2, 2);
title(t, "plotMultiwavelet Example")
nexttile;
plot(phix, phi1, 'LineWidth', 2);
hold on;
yline(0, 'LineWidth', 1);
hold off;
grid on;
ylim([minp, maxp]);
xlabel("Time [s]");
ylabel("Amplitude");
title([multiwavelet.name + " Multiscaling function \phi_1"]);
nexttile;
plot(phix, phi2, 'LineWidth', 2);
hold on;
yline(0, 'LineWidth', 1);
hold off;
grid on;
ylim([minp, maxp]);
xlabel("Time [s]");
ylabel("Amplitude");
title([multiwavelet.name + " Multiscaling function \phi_2"]);
nexttile;
plot(psix, psi1, 'LineWidth', 2);
hold on;
yline(0, 'LineWidth', 1);
hold off;
grid on;
ylim([minp, maxp]);
xlabel("Time [s]");
ylabel("Amplitude");
title([multiwavelet.name + " Multiwavelet function \psi_1"]);
nexttile;
plot(psix, psi2, 'LineWidth', 2);
hold on;
yline(0, 'LineWidth', 1);
hold off;
grid on;
ylim([minp, maxp]);
xlabel("Time [s]");
ylabel("Amplitude");
title([multiwavelet.name + " Multiwavelet function \psi_2"]);
end
f = figure(9);
if maximalized_plot
f.WindowState = 'maximized';
end
plotMultiWavelet('HAAR');