-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexp_build.py
338 lines (266 loc) · 13.1 KB
/
exp_build.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import os
import time
import warnings
import numpy as np
import pandas as pd
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
from lion_pytorch import Lion
from models import DLinear, TimesNet
from utils.tools import EarlyStopping, adjust_learning_rate, visual, test_params_flop, check_graph
from utils.utils import progress_bar
from utils.metrics import metric
from data_provider.data_build import data_builder
import matplotlib.pyplot as plt
import pdb
warnings.filterwarnings('ignore')
class Exp_builder():
def __init__(self, args):
self.args = args
self.device = self._acquire_device()
self.model = self._build_model().to(self.device)
def _acquire_device(self):
if self.args.use_gpu:
os.environ["CUDA_VISIBLE_DEVICES"] = str(
self.args.gpu) if not self.args.use_multi_gpu else self.args.devices
device = torch.device('cuda:{}'.format(self.args.gpu))
print('Use GPU: cuda:{}'.format(self.args.gpu))
else:
device = torch.device('cpu')
print('Use CPU')
return device
# 모델 사용하려면 여기 추가
def _build_model(self):
model_dict = {
'DLinear': DLinear,
'TimesNet': TimesNet,
# 'PatchTST': PatchTST
}
model = model_dict[self.args.model].Model(self.args).float()
return model
def _get_data(self, type):
data_set, data_loader = data_builder(self.args, type)
return data_set, data_loader
def _select_optimizer(self):
if self.args.optim == 'gelu':
model_optim = F.gelu(self.model.parameters(), lr = self.args.learning_rate)
elif self.args.optim == 'adamw':
model_optim = optim.AdamW(self.model.parameters(), lr = self.args.learning_rate)
elif self.args.optim == 'adam':
model_optim = optim.Adam(self.model.parameters(), lr = self.args.learning_rate)
elif self.args.optim == 'SGD':
model_optim = optim.SGD(self.model.parameters(), lr = self.args.learning_rate)
elif self.args.optim == 'lion':
model_optim = Lion(self.model.parameters(), lr = self.args.learning_rate)
return model_optim
def _select_criterion(self):
if self.args.loss == 'mse':
criterion = nn.MSELoss()
elif self.args.loss == 'mae':
criterion = nn.L1Loss()
return criterion
def train(self, setting):
train_data, train_loader = self._get_data(type='train')
if not self.args.train_only:
vali_data, vali_loader = self._get_data(type='val')
path = os.path.join(self.args.checkpoints, setting)
if not os.path.exists(path):
os.makedirs(path)
time_now = time.time()
train_steps = len(train_loader)
early_stopping = EarlyStopping(patience=self.args.patience, verbose=True)
model_optim = self._select_optimizer()
criterion = self._select_criterion()
# pdb.set_trace()
for epoch in range(self.args.train_epochs):
iter_count = 0
train_loss = []
self.model.train()
epoch_time = time.time()
for i, (batch_x, batch_y, batch_x_stamp, batch_y_stamp) in enumerate(train_loader):
iter_count += 1
model_optim.zero_grad()
batch_x = batch_x.float().to(self.device)
batch_y = batch_y.float().to(self.device)
batch_x_stamp = batch_x_stamp.float().to(self.device)
batch_y_stamp = batch_y_stamp.float().to(self.device)
# decoder input
# Pred_len + label_len 만큼의 Input 만들어짐
dec_inp = torch.zeros_like(batch_y[:, -self.args.pred_len:, :]).float()
dec_inp = torch.cat([batch_y[:, :self.args.label_len, :], dec_inp], dim=1).float().to(self.device)
if 'Linear' in self.args.model:
outputs = self.model(batch_x)
elif 'TimesNet' in self.args.model:
outputs = self.model(batch_x, batch_x_stamp, dec_inp, batch_y_stamp, batch_y)
# print(outputs.shape,batch_y.shape)
if self.args.features == 'MS':
f_dim = -1
else:
f_dim = 0
# Loss 계산은 pred_len으로만
outputs = outputs[:, -self.args.pred_len:, f_dim:]
batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device)
loss = criterion(outputs, batch_y)
train_loss.append(loss.item())
if (i + 1) % 100 == 0:
print("\titers: {0}, epoch: {1} | loss: {2:.7f}".format(i + 1, epoch + 1, loss.item()))
speed = (time.time() - time_now) / iter_count
left_time = speed * ((self.args.train_epochs - epoch) * train_steps - i)
print('\tspeed: {:.4f}s/iter; left time: {:.4f}s'.format(speed, left_time))
iter_count = 0
time_now = time.time()
loss.backward()
model_optim.step()
print("Epoch: {} cost time: {}".format(epoch + 1, time.time() - epoch_time))
train_loss = np.average(train_loss)
if not self.args.train_only:
vali_loss = self.vali(vali_data, vali_loader, criterion)
print("Epoch: {0}, Steps: {1} | Train Loss: {2:.7f} Vali Loss: {3:.7f}".format(
epoch + 1, train_steps, train_loss, vali_loss))
early_stopping(vali_loss, self.model, path)
else:
print("Epoch: {0}, Steps: {1} | Train Loss: {2:.7f}".format(
epoch + 1, train_steps, train_loss))
early_stopping(train_loss, self.model, path)
if early_stopping.early_stop:
print("Early stopping")
break
adjust_learning_rate(model_optim, epoch + 1, self.args)
best_model_path = path + '/' + 'checkpoint.pth'
self.model.load_state_dict(torch.load(best_model_path))
return self.model
def vali(self, vali_data, vali_loader, criterion):
total_loss = []
self.model.eval()
with torch.no_grad():
for i, (batch_x, batch_y, batch_x_stamp, batch_y_stamp) in enumerate(vali_loader):
batch_x = batch_x.float().to(self.device)
batch_y = batch_y.float().to(self.device)
batch_x_stamp = batch_x_stamp.float().to(self.device)
batch_y_stamp = batch_y_stamp.float().to(self.device)
# decoder input
# Pred_len + label_len 만큼의 Input 만들어짐
dec_inp = torch.zeros_like(batch_y[:, -self.args.pred_len:, :]).float()
dec_inp = torch.cat([batch_y[:, :self.args.label_len, :], dec_inp], dim=1).float().to(self.device)
if 'Linear' in self.args.model:
outputs = self.model(batch_x)
elif 'TimesNet' in self.args.model:
outputs = self.model(batch_x, batch_x_stamp, dec_inp, batch_y_stamp, batch_y)
# print(outputs.shape,batch_y.shape)
if self.args.features == 'MS':
f_dim = -1
else:
f_dim = 0
# Loss 계산은 pred_len으로만
outputs = outputs[:, -self.args.pred_len:, f_dim:]
batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device)
pred = outputs.detach().cpu()
true = batch_y.detach().cpu()
loss = criterion(pred, true)
total_loss.append(loss)
total_loss = np.average(total_loss)
self.model.train()
return total_loss
def test(self, setting, test=0):
test_data, test_loader = self._get_data(type='test')
if test:
print('loading model')
self.model.load_state_dict(torch.load(os.path.join('./checkpoints/' + setting, 'checkpoint.pth')))
preds = []
trues = []
inputx = []
folder_path = './test_results/' + setting + '/'
if not os.path.exists(folder_path):
os.makedirs(folder_path)
self.model.eval()
with torch.no_grad():
for i, (batch_x, batch_y, batch_x_stamp, batch_y_stamp) in enumerate(test_loader):
batch_x = batch_x.float().to(self.device)
batch_y = batch_y.float().to(self.device)
batch_x_stamp = batch_x_stamp.float().to(self.device)
batch_y_stamp = batch_y_stamp.float().to(self.device)
# decoder input
# Pred_len + label_len 만큼의 Input 만들어짐
dec_inp = torch.zeros_like(batch_y[:, -self.args.pred_len:, :]).float()
dec_inp = torch.cat([batch_y[:, :self.args.label_len, :], dec_inp], dim=1).float().to(self.device)
if 'Linear' in self.args.model:
outputs = self.model(batch_x)
elif 'TimesNet' in self.args.model:
outputs = self.model(batch_x, batch_x_stamp, dec_inp, batch_y_stamp, batch_y)
# print(outputs.shape,batch_y.shape)
if self.args.features == 'MS':
f_dim = -1
else:
f_dim = 0
# Loss 계산은 pred_len으로만
outputs = outputs[:, -self.args.pred_len:, f_dim:]
batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device)
outputs = outputs.detach().cpu().numpy()
batch_y = batch_y.detach().cpu().numpy()
pred = outputs
true = batch_y
preds.append(pred)
trues.append(true)
inputx.append(batch_x.detach().cpu().numpy())
if i % 50 == 0:
input = batch_x.detach().cpu().numpy()
gt = np.concatenate((input[0, :, -1], true[0, :, -1]), axis=0)
pd = np.concatenate((input[0, :, -1], pred[0, :, -1]), axis=0)
visual(gt, pd, os.path.join(folder_path, str(i) + '.png'))
preds = np.concatenate(preds, axis=0)
trues = np.concatenate(trues, axis=0)
inputx = np.concatenate(inputx, axis=0)
# result save
folder_path = './results/' + setting + '/'
if not os.path.exists(folder_path):
os.makedirs(folder_path)
mae, mse, rmse, mape, mspe, rse, corr = metric(preds, trues)
print('mse:{}, mae:{}'.format(mse, mae))
f = open("result.txt", 'a')
f.write(setting + " \n")
f.write('mse:{}, mae:{}, rse:{}, corr:{}'.format(mse, mae, rse, corr))
f.write('\n')
f.write('\n')
f.close()
np.save(folder_path + 'metrics.npy', np.array([mae, mse, rmse, mape, mspe, rse]))
np.save(folder_path + 'pred.npy', preds)
np.save(folder_path + 'true.npy', trues)
return
def predict(self, setting, load=False):
pred_data, pred_loader = self._get_data(type='pred')
if load:
path = os.path.join(self.args.checkpoints, setting)
best_model_path = path + '/' + 'checkpoint.pth'
self.model.load_state_dict(torch.load(best_model_path))
preds = []
self.model.eval()
with torch.no_grad():
for i, (batch_x, batch_y, batch_x_stamp, batch_y_stamp) in enumerate(pred_loader):
batch_x = batch_x.float().to(self.device)
batch_y = batch_y.float()
batch_x_stamp = batch_x_stamp.float().to(self.device)
batch_y_stamp = batch_y_stamp.float().to(self.device)
# decoder input
# Pred_len + label_len 만큼의 Input 만들어짐
dec_inp = torch.zeros_like(batch_y[:, -self.args.pred_len:, :]).float()
dec_inp = torch.cat([batch_y[:, :self.args.label_len, :], dec_inp], dim=1).float().to(self.device)
if 'Linear' in self.args.model:
outputs = self.model(batch_x)
elif 'TimesNet' in self.args.model:
outputs = self.model(batch_x, batch_x_stamp, dec_inp, batch_y_stamp, batch_y)
pred = outputs.detach().cpu().numpy() # .squeeze()
preds.append(pred)
preds = np.array(preds)
preds = np.concatenate(preds, axis=0)
if (pred_data.scale):
preds = pred_data.inverse_transform(preds)
# result save
folder_path = './results/' + setting + '/'
if not os.path.exists(folder_path):
os.makedirs(folder_path)
np.save(folder_path + 'real_prediction.npy', preds)
pd.DataFrame(np.append(np.transpose([pred_data.future_dates]), preds[0], axis=1), columns=pred_data.cols).to_csv(folder_path + 'real_prediction.csv', index=False)
return