-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathadvance.py
149 lines (128 loc) · 5.15 KB
/
advance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Copyright 2020 JD.com, Inc. Galileo Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
'''
使用Galileo KerasTrainer训练LINE模型,高级用法
'''
import os
import argparse
import galileo as g
import galileo.tf as gt
import tensorflow as tf
class LINE(gt.Unsupervised):
def __init__(self, embedding_size, embedding_dim, order=2, **kwargs):
super().__init__(**kwargs)
self._target_encoder = gt.Embedding(embedding_size, embedding_dim)
if order == 1:
self._context_encoder = self._target_encoder
else:
self._context_encoder = gt.Embedding(embedding_size, embedding_dim)
def target_encoder(self, inputs):
return self._target_encoder(inputs)
def context_encoder(self, inputs):
return self._context_encoder(inputs)
class Inputs(g.BaseInputs):
def __init__(self, **kwargs):
super().__init__(config=kwargs)
def train_transform(self, src, dst, types):
vertex_type = self.config['vertex_type']
negative_num = self.config['negative_num']
target = tf.reshape(src, [-1, 1])
size = target.shape[0]
context = tf.reshape(dst, [-1, 1])
negs = gt.ops.sample_vertices(vertex_type,
count=size * negative_num)[0]
negative = tf.reshape(negs, [size, negative_num])
return {'target': target, 'context': context, 'negative': negative}
def train_data(self):
return gt.dataset_pipeline(gt.EdgeDataset, self.train_transform,
**self.config)
def eval_transform(self, vertices):
vertex_type = self.config['vertex_type']
edge_types = self.config['edge_types']
negative_num = self.config['negative_num']
size = tf.size(vertices)
target = tf.reshape(vertices, [-1, 1])
positive_ = gt.ops.sample_neighbors(tf.reshape(vertices, [-1]),
edge_types,
count=1,
has_weight=False)
context = tf.reshape(positive_, [-1, 1])
negs = gt.ops.sample_vertices(vertex_type,
count=size * negative_num)[0]
negative = tf.reshape(negs, [size, negative_num])
return {'target': target, 'context': context, 'negative': negative}
def evaluate_data(self):
test_ids = g.get_test_vertex_ids(
data_source_name=self.config['data_source_name'])
return gt.dataset_pipeline(
lambda **kwargs: gt.TensorDataset(test_ids, **kwargs),
self.eval_transform, **self.config)
def predict_data(self):
return gt.dataset_pipeline(
lambda **kwargs: gt.RangeDataset(
start=0, end=kwargs['max_id'] + 1, **kwargs),
lambda inputs: {'target': inputs}, **self.config)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--max_id', default=2708, type=int, help='max node id')
parser.add_argument('--gpu', default='0', type=str, help='gpu devices')
parser.add_argument('--order', default=2, type=int, help='LINE order')
parser.add_argument('--model_dir',
default='.models/line_tf',
type=str,
help='model dir')
parser = g.define_service_args(parser)
args, _ = parser.parse_known_args()
if args.data_source_name is None:
args.data_source_name = 'cora'
g.start_service_from_args(args)
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
model_args = dict(
embedding_size=args.max_id + 1,
embedding_dim=64,
order=args.order,
metric_names='Mrr',
name='LINE',
)
inputs = Inputs(vertex_type=[0],
edge_types=[0],
negative_num=5,
data_source_name=args.data_source_name)
is_multi_gpu = len(args.gpu.split(',')) > 1
ds = 'mirrored' if is_multi_gpu else None
trainer = gt.KerasTrainer(
LINE,
inputs,
distribution_strategy=ds,
zk_server=args.zk_server,
zk_path=args.zk_path,
model_args=model_args,
)
model_config = dict(
batch_size=32,
max_id=args.max_id,
model_dir=args.model_dir,
num_epochs=10,
save_checkpoint_epochs=5,
log_steps=100,
optimizer='adam',
learning_rate=0.01,
train_verbose=2,
)
trainer.train(**model_config)
trainer.evaluate(**model_config)
trainer.predict(**model_config)
if __name__ == "__main__":
main()