-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcall.py
556 lines (474 loc) · 23.7 KB
/
call.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
import common
import scipy.signal
import scipy.stats
import bottleneck
import numpy
import math
import sys
import os
import time
#claibrate the ratio values of the sex chromosomes
def calibrate_sex(Data):
female=True
y_ratio=0
for chromosome in Data["chromosomes"]:
if chromosome == "Y" or "chrY" == chromosome:
y_ratio=numpy.median( Data[chromosome]["ratio"][ numpy.where(Data[chromosome]["ratio"] >= 0 ) ])
continue
if y_ratio > 0.3:
female = False
if female:
for chromosome in Data["chromosomes"]:
if chromosome == "Y" or "chrY" == chromosome:
#add one to all the ratios on the y chromosome, any coverage found will become a duplication
for i in range(0,len(Data[chromosome]["ratio"])):
if not -1 == Data[chromosome]["ratio"][i]:
Data[chromosome]["ratio"][i] += 1
else:
for chromosome in Data["chromosomes"]:
if chromosome == "Y" or "chrY" == chromosome or "X" == chromosome or "chrX" == chromosome:
#multiply the ratios on the x and y chromosomes by 2
for i in range(0,len(Data[chromosome]["ratio"])):
if not Data[chromosome]["ratio"][i] == -1:
Data[chromosome]["ratio"][i] = 2*Data[chromosome]["ratio"][i]
return(Data)
def retrieve_phred(bins,ratio,percentiles):
pvals=[]
for b in bins:
percentile=0
for val in percentiles:
if val > b:
break
percentile+=0.001
if ratio > 1:
percentile=1-percentile
if percentile < 0:
percentile=0
if not percentile:
percentile=0.000001
pvals.append(percentile)
p= scipy.stats.combine_pvalues(pvals)[1]
p=p*len(pvals)
if not p or p < 0:
return(1000)
phred=int(round(-math.log10(p)))
if phred > 1000:
return 1000
return(phred)
def retrieve_phred_non_param(nbins,ratio,data,ratio_hist):
pvals=[]
n=10000
p=0
sampled_chromosomes=[]
#pick chromosomes big enough to sample from
for chromosome in data["chromosomes"]:
if len(data[chromosome]["ratio"]) > 10*nbins and not "X" in chromosome and not "Y" in chromosome and abs(ratio_hist[chromosome][0]-1) < 0.1:
sampled_chromosomes.append(chromosome)
if not sampled_chromosomes:
return(int(-10*math.log10(1/float(n))))
chromosomes=list(sorted(numpy.random.choice(sampled_chromosomes,size=n)))
simulated_positions=[]
#simulate
for chromosome in sorted(sampled_chromosomes):
simulated_positions+=list(numpy.random.randint(0,high=len(data[chromosome]["ratio"])-nbins,size=chromosomes.count(chromosome)))
failed=0
for i in range(0,n):
chromosome=chromosomes[i]
pos=simulated_positions[i]
sim_bins=data[chromosome]["ratio"][pos:pos+nbins]
if list(sim_bins).count(-1)/float(len(sim_bins)) >= 0.6:
failed+=1
continue
sim_ratio=bottleneck.median(sim_bins[numpy.where(sim_bins >= 0)],axis=0)
if ratio > 1 and sim_ratio >= ratio:
p+=1
elif ratio < 1 and sim_ratio <= ratio:
p +=1
if failed == n:
return 1000
p=p/float(n-failed)
if not p:
return(int(-10*math.log10(1/float(n-failed))))
#normalise between 1000 and 1
phred=int(-10*math.log10(p))
return(phred)
#divide all bins into segments, these segments are dup,del,normal, or filtered
def segmentation(Data,minimum_bin):
variants={}
for chromosome in Data["chromosomes"]:
start_pos=-1;
end_pos=-1;
variant_type=None
past_variant_type=-1
for i in range(0,len(Data[chromosome]["var"])):
variant_type=Data[chromosome]["var"][i]
if past_variant_type == -1:
start_pos=i
end_pos = i+1
past_variant_type=variant_type
elif past_variant_type == variant_type:
end_pos +=1
else:
if not chromosome in variants:
variants[chromosome] = []
ratio_list=Data[chromosome]["ratio"][start_pos:end_pos+1]
ratio_list=ratio_list[numpy.where(ratio_list >= 0)]
variants[chromosome].append({"start":start_pos,"end":end_pos,"type":past_variant_type,"ratio":bottleneck.median(ratio_list),"bins":end_pos-start_pos,"ratio_list":list(ratio_list)})
ratio_list=[]
past_variant_type=variant_type
start_pos=i
end_pos=start_pos+1
return(variants)
def mad(arr):
#copied from:https://stackoverflow.com/questions/8930370/where-can-i-find-mad-mean-absolute-deviation-in-scipy
arr = numpy.ma.array(arr).compressed() # should be faster to not use masked arrays.
med = bottleneck.median(arr)
return bottleneck.median(numpy.abs(arr - med))
def chromosome_hist(Data,Q):
ratio_hist={}
for chromosome in Data["chromosomes"]:
bins=[]
cov=[]
for i in range(0,len(Data[chromosome]["ratio"])):
if len(Data[chromosome]["quality"]):
#if Data[chromosome]["ratio"][i] > 0 and Data[chromosome]["quality"][i] > Q and Data[chromosome]["GC"][i] > 0:
if Data[chromosome]["ratio"][i] >= 0 and Data[chromosome]["GC"][i] > 0:
bins.append(Data[chromosome]["ratio"][i])
cov.append(Data[chromosome]["coverage"][i])
else:
if Data[chromosome]["ratio"][i] >= 0 and Data[chromosome]["GC"][i] > 0:
bins.append(Data[chromosome]["ratio"][i])
cov.append(Data[chromosome]["coverage"][i])
if len(bins) > 0:
ratio_hist[chromosome]=[numpy.median(bins),0,numpy.median(cov),0]
n=len(bins)
for i in range(0,len(bins)):
ratio_hist[chromosome][1]+=(ratio_hist[chromosome][0]-bins[i])*(ratio_hist[chromosome][0]-bins[i])/(n)
ratio_hist[chromosome][3]+=(ratio_hist[chromosome][2]-cov[i])*(ratio_hist[chromosome][2]-cov[i])/(n)
ratio_hist[chromosome][1]=mad(bins)
ratio_hist[chromosome][3]=mad(cov)
else:
ratio_hist[chromosome]=[0,0,0,0]
return(ratio_hist)
#merge segments
def merge(variants,min_bins):
merged_variants={}
#segments that are separated by nothing will be merged
for chromosome in variants:
past_variant_type=-1
merged_variant=[]
for i in range(0,len(variants[chromosome])):
variant_type = variants[chromosome][i]["type"]
#print variant_type
if past_variant_type == -1:
past_variant_type= variant_type
merged_variant.append( i )
elif past_variant_type == variant_type:
merged_variant.append( i )
else:
if not chromosome in merged_variants:
merged_variants[chromosome] = []
variant={}
variant["start"]=variants[chromosome][ merged_variant[0] ]["start"]
variant["end"]=variants[chromosome][merged_variant[-1]]["end"]
variant["type"]=past_variant_type
bins=[]
for var in merged_variant:
bins += variants[chromosome][var]["ratio_list"]
variant["ratio_list"]=bins
variant["bins"]=len(variant["ratio_list"])
variant["ratio"]=numpy.median(variant["ratio_list"])
merged_variants[chromosome].append(variant)
merged_variant=[i]
past_variant_type= variant_type
return(merged_variants)
def merge_similar(variants):
merged_variants={}
#closely located segments are merged
for chromosome in variants:
i=0
index_list=[]
while i < len(variants[chromosome])-1:
if i == 0:
merged_variant=variants[chromosome][i]
index_list.append(i)
i += 1
continue
variant_span= variants[chromosome][i]["end"] - merged_variant["start"]
variant_dist= variants[chromosome][i]["start"] - merged_variant["end"]
if (variants[chromosome][i]["type"] == merged_variant["type"]) and 0.1 >= variant_dist/float(variant_span) and variant_dist < 20000:
merged_variant["end"]=variants[chromosome][i]["end"]
merged_variant["ratio_list"]+=variants[chromosome][i]["ratio_list"]
index_list.append(i)
else:
if not chromosome in merged_variants:
merged_variants[chromosome] = []
variant={}
variant["start"]=merged_variant["start"]
variant["end"]=merged_variant["end"]
variant["type"]=merged_variant["type"]
variant["ratio_list"]=merged_variant["ratio_list"]
variant["bins"]=len(variant["ratio_list"])
variant["ratio"]=numpy.median(variant["ratio_list"])
merged_variants[chromosome].append(variant)
merged_variant=variants[chromosome][i]
index_list=[i]
i +=1
return(merged_variants)
#filter the data
def filter(Data,minimum_bin):
if minimum_bin % 2 == 0:
minimum_bin += 1
start=-1
for chromosome in Data["chromosomes"]:
filtered_list=[]
for i in range(0,len(Data[chromosome]["ratio"])):
if start == -1 and Data[chromosome]["ratio"][i] != -1:
start = i
if start !=-1 and Data[chromosome]["ratio"][i] != -1:
filtered_list.append(Data[chromosome]["ratio"][i])
if start !=-1 and Data[chromosome]["ratio"][i] == -1:
if len(filtered_list) < minimum_bin:
remove=numpy.zeros(len(filtered_list))-1
Data[chromosome]["ratio"][start:start+len(filtered_list)]=remove
else:
small=scipy.signal.medfilt(filtered_list,minimum_bin)
#Data[chromosome]["ratio"][start:start+len(filtered_list)]=scipy.signal.wiener(small,minimum_bin)
Data[chromosome]["ratio"][start:start+len(filtered_list)]=small
filtered_list=[]
start=-1
if start != -1:
Data[chromosome]["ratio"][start:start+len(filtered_list)]=scipy.signal.medfilt(filtered_list,minimum_bin)
filtered_list=[]
start=-1
return(Data)
def coverage_hist(Data,ratio_hist):
hist=[]
for chromosome in Data["chromosomes"]:
if ratio_hist[chromosome][0] < 0.5:
continue
for i in range(0,len(Data[chromosome]["ratio"])):
if Data[chromosome]["ratio"][i] < 0:
continue
if not i % 100 and not numpy.isnan(Data[chromosome]["ratio"][i]):
hist.append(Data[chromosome]["ratio"][i])
hist=numpy.array(hist)
return(hist)
def main(Data,GC_hist,args):
#compute the scaled coverage
print("finished reading the coverage data")
bin_size=Data["bin_size"]
args.min_bins=int(args.nbins/2)
if not args.min_bins:
print ("Error: the minimum variant size is smaller than the bin sie of the input data!")
quit()
for chromosome in Data["chromosomes"]:
Data[chromosome]["ratio"]=[]
for i in range(0,len(Data[chromosome]["coverage"])):
if not Data[chromosome]["GC"][i] in GC_hist:
Data[chromosome]["ratio"].append(-1)
elif GC_hist[Data[chromosome]["GC"][i]][0] > 0 and not Data[chromosome]["GC"][i]== -1:
if Data[chromosome]["coverage"][i]/GC_hist[Data[chromosome]["GC"][i]][0] < args.max:
Data[chromosome]["ratio"].append(Data[chromosome]["coverage"][i]/GC_hist[Data[chromosome]["GC"][i]][0])
else:
Data[chromosome]["ratio"].append(-1)
else:
Data[chromosome]["ratio"].append(-1)
Data[chromosome]["ratio"]=numpy.array(Data[chromosome]["ratio"])
Data=calibrate_sex(Data)
#filter the bins
print("applying filters")
Data=filter(Data,args.nbins*2)
print("computing coverage histogram")
ratio_hist=chromosome_hist(Data,args.Q)
hist=coverage_hist(Data,ratio_hist)
percentiles=numpy.percentile(hist,numpy.array(range(0,1001))/10.0)
overall_sd=numpy.std(hist[ numpy.where(hist <= 2) ])
print("derivative based segmentation")
for chromosome in Data["chromosomes"]:
Data[chromosome]["var"]=numpy.repeat( "NEUTRAL",len(Data[chromosome]["ratio"]) );
Data[chromosome]["ratio"]=numpy.array(Data[chromosome]["ratio"])
ratio_indexes=[]
ratios=[]
for i in range(1,len(Data[chromosome]["ratio"])):
if Data[chromosome]["ratio"][i] >= 0:
ratio_indexes.append(i)
ratios.append(Data[chromosome]["ratio"][i])
differences=[]
for i in range(1,args.nbins+1):
tmp=[]
for j in range(0,len(ratios)-args.nbins):
tmp.append( abs(ratios[j]-ratios[i+j]))
differences.append(tmp)
differences=numpy.array(differences)
change_points=[]
#print len(ratios)
lim=2*overall_sd
#lim=0.2
for i in range(0,len(ratios)-args.nbins):
changes=differences[:,i]
#print "{} {}".format(lim,numpy.min(changes))
if bottleneck.median(changes,axis=0) > lim and numpy.std(changes[1:]) < overall_sd:
#print "{} {}".format(lim,numpy.min(changes))
change_points.append(ratio_indexes[i])
segments=[]
change_points.append( len( Data[chromosome]["ratio"] ) )
for i in range(0,len(change_points)):
if i == 0:
segments.append(range(0,change_points[i]))
elif i != len(change_points)-1:
segments.append(range(change_points[i-1],change_points[i]))
else:
segments.append(range(change_points[i-1],len(Data[chromosome]["ratio"])))
for segment in segments:
segment_intensities= Data[chromosome]["ratio"][segment]
non_filt_bins=segment_intensities[numpy.where(segment_intensities >= 0)]
TYPE="NEUTRAL"
med=bottleneck.median(non_filt_bins,axis=0)
if len(non_filt_bins) < args.min_bins:
TYPE="FILT"
elif med <= 1-0.5/args.plody:
TYPE="DEL"
elif med >= 1+0.5/args.plody:
TYPE="DUP"
Data[chromosome]["var"][segment]=TYPE
print("raw coverage segmentation")
for chromosome in Data["chromosomes"]:
for i in range(0,len(Data[chromosome]["ratio"])-10*args.nbins):
seg_bins=Data[chromosome]["ratio"][i:i+10*args.nbins]
if list(seg_bins).count(-1)/float(len(seg_bins)) >= 0.6:
continue
seg_bin_median=bottleneck.median(seg_bins[numpy.where(seg_bins >= 0)],axis=0)
if seg_bin_median >= 1+overall_sd*2.5 and len(seg_bins[numpy.where(seg_bins >= 0.5/args.plody+1)])/float(len(seg_bins)) >= 0.9:
Data[chromosome]["var"][i:i+10*args.nbins]="DUP"
elif seg_bin_median <= 1-overall_sd*2.5 and len(seg_bins[numpy.where(seg_bins >= 1-0.5/args.plody)])/float(len(seg_bins)) >= 0.9:
Data[chromosome]["var"][i:i+10*args.nbins]="DEL"
print("merging")
variants=segmentation(Data,args.min_bins)
size_filtered_variants={}
for chromosome in variants:
for variant in variants[chromosome]:
if variant["bins"] >= args.min_bins:
if not chromosome in size_filtered_variants:
size_filtered_variants[chromosome] = []
size_filtered_variants[chromosome].append(variant)
variants=merge(size_filtered_variants,args.min_bins)
CNV_filtered={}
for chromosome in variants:
for variant in variants[chromosome]:
if variant["type"] == "DUP" or variant["type"] == "DEL":
if not chromosome in CNV_filtered:
CNV_filtered[chromosome] = []
CNV_filtered[chromosome].append(variant)
#read the bam header
args.contigs={}
args.contig_order=[]
if args.bam:
with os.popen("samtools view -H {}".format(args.bam)) as pipe:
for line in pipe:
if line[0] == "@":
if "SN:" in line:
content=line.strip().split()
chromosome=content[1].split("SN:")[-1]
length=content[2].split("LN:")[-1]
args.contigs[chromosome]=length
args.contig_order.append(chromosome)
elif "\tSM:" in line and not args.sample:
args.sample=line.split("\tSM:")[-1].split("\t")[0].strip()
#print the variants
print("computing statistics")
vals=[]
counts={}
n_variants=0
for chromosome in Data["chromosomes"]:
if chromosome in variants:
for variant in variants[chromosome]:
if variant["type"] == "DUP" or variant["type"] == "DEL" or 1 == 2:
phred_non_param=retrieve_phred_non_param(variant["bins"],variant["ratio"],Data,ratio_hist)
if not phred_non_param in counts:
vals.append(phred_non_param)
counts[phred_non_param]=0
counts[phred_non_param]+=1
variant["pred_non_param"]=phred_non_param
n_variants+=1
if n_variants:
args.scoren+=round(10*math.log10(n_variants/1000.0))
else:
args.scoren=1
f=open(args.output,"w")
f.write("##fileformat=VCFv4.1\n")
f.write("##source=AMYCNE\n")
f.write("##ALT=<ID=DEL,Description=\"Deletion>\n")
f.write("##ALT=<ID=DUP,Description=\"Duplication\">\n")
f.write("##INFO=<ID=RDR,Number=1,Type=Float,Description=\"Average coverage/reference ratio\">\n")
f.write("##INFO=<ID=END,Number=1,Type=Integer,Description=\"The end position of the variant\">\n")
f.write("##INFO=<ID=SVLEN,Number=1,Type=Integer,Description=\"The length of the variant\">\n")
f.write("##INFO=<ID=BINS,Number=1,Type=Integer,Description=\"The number of bins used to call the variant\">\n")
f.write("##INFO=<ID=SCOREF,Number=1,Type=Integer,Description=\"The variant score produced from Fishers method\">\n")
f.write("##INFO=<ID=SCOREN,Number=1,Type=Integer,Description=\"The variant score produced from non-parametric sampling method\">\n")
f.write("##INFO=<ID=QUAL,Number=1,Type=Float,Description=\"The fraction of low quality bins\">\n")
f.write("##INFO=<ID=FAILED_BINS,Number=1,Type=Float,Description=\"The fraction of filtered bins\">\n")
f.write("##INFO=<ID=ratio,Number=1,Type=Float,Description=\"Normalised coverage across the chromosome\">\n")
f.write("##INFO=<ID=ratioMAD,Number=1,Type=Float,Description=\"normalised Median absolute deviation across the chromosome\">\n")
f.write("##INFO=<ID=coverage,Number=1,Type=Float,Description=\"Median coverage of the chromosome\">\n")
f.write("##INFO=<ID=coverageMAD,Number=1,Type=Float,Description=\"Median absolute deviation of the coverage across the chromosome\">\n")
if args.contig_order:
for contig in args.contig_order:
f.write("##contig=<ID={},length={}>\n".format(contig,args.contigs[contig]))
f.write("##FILTER=<ID=LowBinQual,Description=\"More than 90% of the bins have less than {} mapping quality\">\n".format(args.Q))
f.write("##FILTER=<ID=RegionFilter,Description=\"More than 90% of the bins are flagged extremed GC and/or mapping quality\">\n")
f.write("##FILTER=<ID=RatioFilter,Description=\"The RD ratio is less than 2 sd of the RD, or RDR higher than ratiolim\">\n")
f.write("##FILTER=<ID=LowScore,Description=\"Low variant score\">\n")
f.write("##FORMAT=<ID=CN,Number=1,Type=Integer,Description=\"Copy number genotype for imprecise events\">\n")
f.write("##FORMAT=<ID=GT,Number=1,Type=String,Description=\"Genotype\">\n")
f.write("##nbins={} RDstdev={} ScoreNLimit={}\n".format(args.nbins,overall_sd,args.scoren))
f.write("##AMYCNEcmd=\"{}\"\n".format(" ".join(sys.argv)))
if not args.sample:
args.sample=args.coverage.split("/")[-1].split(".")[0]
f.write("#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\t{}\n".format(args.sample))
format_column="GT:CN"
id_tag=0;
for chromosome in Data["chromosomes"]:
if chromosome in variants:
for variant in variants[chromosome]:
if variant["type"] == "DUP" or variant["type"] == "DEL" or 1 == 2:
id_tag +=1
filt="PASS"
info_field="END={};SVLEN={};RDR={};BINS={}".format(bin_size*variant["end"],(variant["end"]-variant["start"]+1)*bin_size,variant["ratio"],variant["bins"] )
CN=int(round(variant["ratio"]*args.plody))
if "quality" in Data[chromosome]:
failed_bins=0
for i in range(variant["start"],variant["end"]):
if Data[chromosome]["quality"][i] < args.Q and Data[chromosome]["GC"][i] > 0 and Data[chromosome]["ratio"][i] > 0:
failed_bins += 1
if failed_bins/float(variant["end"]-variant["start"]) > 0.9:
filt="LowBinQual"
info_field +=";QUAL={}".format( failed_bins/float(variant["end"]-variant["start"]) )
phred=retrieve_phred(variant["ratio_list"],variant["ratio"],percentiles)
phred_non_param=variant["pred_non_param"]
info_field+=";SCOREF={};SCOREN={}".format(phred,phred_non_param)
#info_field+=";SCOREF={}".format(phred)
if phred < args.scoref or phred_non_param < args.scoren:
filt="LowScore"
failed_bins=0
for i in range(variant["start"],variant["end"]):
if Data[chromosome]["ratio"][i] < 0:
failed_bins += 1
if failed_bins/float(variant["end"]-variant["start"]) > 0.9:
filt="RegionFilter"
if abs(variant["ratio"]-1) <= overall_sd*2 or abs(variant["ratio"]) > args.ratioLim:
filt="RatioFilter"
info_field +=";FAILED_BINS={}".format( failed_bins/float(variant["end"]-variant["start"]) )
mean=numpy.average(variant["ratio_list"])
SEM=numpy.std(variant["ratio_list"])/numpy.sqrt( len(variant["ratio_list"]) )
ci="({},{})".format(round(mean-SEM*3,2),round(mean+SEM*3,2))
firstrow = "{}\t{}\tAMYCNE_{}\tN\t<{}>\t{}\t{}".format(chromosome,bin_size*variant["start"],id_tag,variant["type"],phred_non_param,filt)
info_field+=";ratio={};ratioMAD={};coverage={};coverageMAD={}".format(ratio_hist[chromosome][0],ratio_hist[chromosome][1],ratio_hist[chromosome][2],ratio_hist[chromosome][3])
alt=abs((CN-args.plody))
if alt > args.plody:
alt=args.plody
ref=args.plody-alt
genotype="/".join(["0"]*ref+["1"]*alt)
format_field="{}\t{}:{}".format(format_column,genotype,CN)
f.write("\t".join([firstrow,info_field,format_field])+"\n")
f.close()