Skip to content

Latest commit

 

History

History
267 lines (110 loc) · 2.86 KB

File metadata and controls

267 lines (110 loc) · 2.86 KB

中文文档

Description

On a N * N grid, we place some 1 * 1 * 1 cubes that are axis-aligned with the x, y, and z axes.

Each value v = grid[i][j] represents a tower of v cubes placed on top of grid cell (i, j).

Now we view the projection of these cubes onto the xy, yz, and zx planes.

A projection is like a shadow, that maps our 3 dimensional figure to a 2 dimensional plane. 

Here, we are viewing the "shadow" when looking at the cubes from the top, the front, and the side.

Return the total area of all three projections.

 

Example 1:

Input: [[2]]

Output: 5

Example 2:

Input: [[1,2],[3,4]]

Output: 17

Explanation: 

Here are the three projections ("shadows") of the shape made with each axis-aligned plane.



Example 3:

Input: [[1,0],[0,2]]

Output: 8

Example 4:

Input: [[1,1,1],[1,0,1],[1,1,1]]

Output: 14

Example 5:

Input: [[2,2,2],[2,1,2],[2,2,2]]

Output: 21

 

Note:

    <li><code>1 &lt;= grid.length = grid[0].length&nbsp;&lt;= 50</code></li>
    
    <li><code>0 &lt;= grid[i][j] &lt;= 50</code></li>
    

Solutions

Python3

Java

...