-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·516 lines (438 loc) · 25.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
import torch
print(torch.__version__)
import os
import argparse
import random
import numpy as np
import mesh_model
import stats
import uti_func
from uti_func import ErrorMetrics, count_model_params
import wandb
from torch_geometric.loader import DataLoader
from tqdm import trange
import copy
import time
def time_it():
return time.time_ns() / (10 ** 9) # convert to floating-point seconds
############################### Training/testing loops ##############################
"""Training functions"""
def train(dataset, device, stats_list, args, comp_args, PATH=None):
'''
Performs a training loop on the dataset for MeshGraphNets. Also calls
test and validation functions.
'''
#Define the model name for saving
if (args.model_name == ''):
if (args.seed_list == ''):
# default values
args.model_name= 'model'+ args.model +'_var'+ args.var_type + '_node_based' + str(args.node_based) + \
args.data_type + '_edge'+ args.edge_type + \
'_relPerm' + args.rela_perm + \
'_skip'+ str(args.skip) + '_roll_num' + str(args.rollout_num) +\
'_well_weight' + str(args.well_weight) +\
'_model_nl'+str(args.num_layers)+'_bs'+str(args.batch_size) + \
'_hd'+str(args.hidden_dim)+'_ep'+str(args.epochs)+'_wd'+str(args.weight_decay) + \
'_lr'+str(args.lr)+'_shuff_'+str(args.shuffle)+'_tr'+str(args.train_size)+'_te'+str(args.test_size)
else:
# tunning random seed
args.model_name= 'model'+ args.model+'_seed' + str(args.seed) +'_var'+ args.var_type + \
'_node_based' + str(args.node_based) + args.data_type + '_edge'+ args.edge_type + \
'_relPerm' + args.rela_perm + \
'_skip'+ str(args.skip) + '_roll_num' + str(args.rollout_num) +\
'_well_weight' + str(args.well_weight) +\
'_model_nl'+str(args.num_layers)+'_bs'+str(args.batch_size) + \
'_hd'+str(args.hidden_dim)+'_ep'+str(args.epochs)+'_wd'+str(args.weight_decay) + \
'_lr'+str(args.lr)+'_shuff_'+str(args.shuffle)+'_tr'+str(args.train_size)+'_te'+str(args.test_size)
wandb_name = args.model_name
wandb.init(mode="disabled") # turn off wandb logging
#wandb.init(project=args.project_name, entity=args.wandb_usr, name=wandb_name)
wandb.config.update(args)
#args.anim_name = model_name
#torch_geometric DataLoaders are used for handling the data of lists of graphs
loader = DataLoader(dataset[:args.train_size],
batch_size=args.batch_size, shuffle=args.shuffle) # each LSTM takes mesh_sizes * timestep
test_loader = DataLoader(dataset[args.train_size:args.train_size+ args.test_size],
batch_size=args.test_batch_size, shuffle=args.shuffle)
#The statistics of the data are decomposed
[mean_vec_x,std_vec_x,mean_vec_edge,std_vec_edge,mean_vec_y,std_vec_y] = stats_list
(mean_vec_x,std_vec_x,mean_vec_edge,std_vec_edge,mean_vec_y,std_vec_y)=(mean_vec_x.to(device),
std_vec_x.to(device),mean_vec_edge.to(device),std_vec_edge.to(device),mean_vec_y.to(device),std_vec_y.to(device))
# build model
num_node_features = dataset[0].x.shape[1]
num_edge_features = dataset[0].edge_attr.shape[1]
num_classes = 1 # the dynamic variables have the shape of 1 (saturation )
gas_error = ErrorMetrics(args.var_type) # error metrics for gas saturation
# Load the pretrained feature extractor
if (args.use_rnn):
# Recurrent_MGN
mgn_model = mesh_model.MeshGraphNet(num_node_features, num_edge_features, args.hidden_dim, num_classes,
args).to(args.device)
if (args.pre_trained):
# load pre-trained model
assert PATH is not None, "Pre-trained model is not given!"
mgn_model.load_state_dict(torch.load(PATH, map_location=args.device))
#gnn_model_summary(mgn_model, args, 'mgn_pretrained')
model = mesh_model.TransferTempoMGN( mgn_model, args.hidden_dim, num_classes,
args).to(device)
else:
# MGN
model = mesh_model.MeshGraphNet(num_node_features, num_edge_features, args.hidden_dim, num_classes,
args).to(args.device)
scheduler, opt = uti_func.build_optimizer(args, model.parameters())
#Show the model parameters
uti_func.gnn_model_summary(model, args)
model_params = count_model_params(model)
print('Model parameter num {}'.format(model_params))
wandb.run.summary["model_params"] = model_params
# train
losses = []
test_losses = []
velo_val_losses = []
best_test_loss = np.inf
best_val_rmse_loss = np.inf
best_model = None
for epoch in trange(args.epochs, desc="Training", unit="Epochs"):
total_loss = 0
model.train()
num_loops=0
cost = 0
for batch in loader:
#Note that normalization must be done before it's called. The stats.unnormalized
#data needs to be preserved in order to correctly calculate the loss
batch=batch.to(device)
cost = 0
roll_out_loss = 0
for num in range(args.rollout_num):
if (num == 0 and args.use_rnn):
h_0 = torch.zeros(batch.x.shape[0], args.hidden_dim).to(device)
c_0 = torch.zeros(batch.x.shape[0], args.hidden_dim).to(device)
if (args.use_rnn):
#print('h_0 {} c_0 {}'.format(h_0.device, c_0.device))
pred, h_0, c_0 = model(batch, mean_vec_x,std_vec_x,mean_vec_edge,
std_vec_edge, h_0, c_0)
loss = model.loss(pred,batch,mean_vec_y,std_vec_y, num)
else:
if (args.noise):
# Injecting noise is only used for one-step model
# perturb (input, output) pairs with a zero-mean gaussian distribution
# current verison adopts a hard-coded noise_scale (0.003), used in deepmind
zero_size = torch.zeros(batch.x[:, 0].size(), dtype=torch.float32)
noise = torch.normal(zero_size, std=args.noise_scale)
# saturation
batch.x[:, 0] += noise
batch.y[:, num] += noise
pred = model(batch, mean_vec_x,std_vec_x,mean_vec_edge, std_vec_edge)
loss = model.loss(pred,batch,mean_vec_y,std_vec_y, num)
if (args.rollout_num > 1):
# For rollout larger than 1, namely previous state needs to attend next state
batch.x[:, 0] = stats.unnormalize( pred.squeeze(), mean_vec_y[num], std_vec_y[num] )
if (args.rela_perm != 'none'):
#print('sg mean {}'.format(torch.mean(batch_tmp.x[:, 0])))
gs_rela_perm, _ = uti_func.calc_rela_perm(args, comp_args, batch.x[:, 0], 1. - batch.x[:, 0]) # calculate gs rela perm
#print('min {} max {}'.format(torch.min(gs_rela_perm), torch.max(gs_rela_perm)))
#print(gs_rela_perm.shape)
#print(torch.mean(gs_rela_perm))
batch.x[:, -1] = gs_rela_perm # update cell-wise rela perm
if (args.debug_log > 0):
# print update gs rela perm at well location
well_mask = torch.argmax(batch.x[:,4:9],dim=1)==torch.tensor(mesh_model.NodeType.WELL)
print('Rollout time {}'.format(num))
print('gs y at well: \n{}'.format(batch.y[well_mask, num]))
print('sg at well: \n{}'.format(batch.x[well_mask, 0]))
print('sg rela at well: \n{}'.format(batch.x[well_mask, -1]))
cost = cost + args.loss_weight_list[num] * loss
roll_out_loss += cost.item()
num += 1
roll_out_loss /= num
cost.backward() #backpropagate loss
opt.step()
opt.zero_grad() #zero gradients each time
total_loss += roll_out_loss
num_loops += 1
if (args.use_rnn):
del h_0
del c_0
total_loss /= num_loops
losses.append(total_loss)
#Every tenth epoch, calculate acceleration test loss and velocity validation loss
if epoch % 10 == 0:
if (args.save_velo_val):
# save saturation evaluation
test_loss, velo_val_rmse = test(test_loader,device,model,mean_vec_x,std_vec_x,mean_vec_edge,
std_vec_edge,mean_vec_y,std_vec_y, args.save_velo_val, loss_weight_list =args.loss_weight_list)
velo_val_losses.append(velo_val_rmse.item())
wandb.log({"test_loss": test_loss.item(),
"{}_val_loss".format(args.var_type): velo_val_rmse.item()})
else:
test_loss, _ = test(test_loader,device,model,mean_vec_x,std_vec_x,mean_vec_edge,
std_vec_edge,mean_vec_y,std_vec_y, args.save_velo_val, error_metric=gas_error,
loss_weight_list =args.loss_weight_list)
test_losses.append(test_loss.item())
# saving model
if not os.path.isdir( args.checkpoint_dir ):
os.mkdir(args.checkpoint_dir)
PATH = os.path.join(args.checkpoint_dir, args.model_name+'.csv')
#df.to_csv(PATH,index=False)
#save the model if the current one is better than the previous best
if test_loss < best_test_loss:
best_test_loss = test_loss
best_val_rmse_loss = velo_val_rmse
best_model = copy.deepcopy(model)
wandb.run.summary["best_test_loss"] = best_test_loss
wandb.run.summary["best_{}_error".format(args.var_type)] = best_val_rmse_loss
else:
#If not the tenth epoch, append the previously calculated loss to the
#list in order to be able to plot it on the same plot as the training losses
if (args.save_velo_val):
test_losses.append(test_losses[-1])
velo_val_losses.append(velo_val_losses[-1])
if(epoch%args.output_freq==0):
if (args.save_velo_val):
print("train loss", str(round(total_loss, 5)),
"test loss", str(round(test_loss.item(), 5)),
"{} val loss {}".format( args.var_type, str(round(velo_val_rmse.item(), 5))))
else:
print("train loss", str(round(total_loss,2)), "test loss", str(round(test_loss.item(),2)))
if(args.save_best_model):
PATH = os.path.join(args.checkpoint_dir, args.model_name+'.pt')
torch.save(best_model.state_dict(), PATH )
wandb.finish() # Finish the wandb run
return test_losses, losses, velo_val_losses, best_model, best_test_loss, test_loader
"""Testing functions"""
def test(loader,device,test_model,
mean_vec_x,std_vec_x,mean_vec_edge,std_vec_edge,mean_vec_y,std_vec_y, is_validation, error_metric=None,
delta_t=0.01, save_model_preds=False, model_type=None, loss_weight_list=None):
'''
Calculates test set losses and validation set errors.
'''
loss_test =0
velo_rmse = 0
num_loops=0
for data in loader:
data=data.to(device)
with torch.no_grad():
cost = 0
roll_out_loss = 0
velo_rmse_rollout = 0
for num in range(args.rollout_num):
if (num == 0 and args.use_rnn):
h_0 = torch.zeros(data.x.shape[0], args.hidden_dim).to(device)
c_0 = torch.zeros(data.x.shape[0], args.hidden_dim).to(device)
if (args.use_rnn):
#print('h_0 {} c_0 {}'.format(h_0.device, c_0.device))
pred, h_0, c_0 = test_model(data, mean_vec_x,std_vec_x,
mean_vec_edge,std_vec_edge, h_0, c_0)
else:
pred = test_model(data, mean_vec_x,std_vec_x,mean_vec_edge,
std_vec_edge)
if (args.rollout_num > 1):
# For rollout larger than 1, namely previous state needs to attend next state
data.x[:, 0] = stats.unnormalize( pred.squeeze(), mean_vec_y[num], std_vec_y[num] )
if (args.rela_perm.lower() != 'none'):
#print('sg mean {}'.format(torch.mean(batch_tmp.x[:, 0])))
gs_rela_perm, _ = uti_func.calc_rela_perm(args, comp_args, data.x[:, 0], 1. - data.x[:, 0]) # calculate gs rela perm
#print(gs_rela_perm.shape)
#print(torch.mean(gs_rela_perm))
data.x[:, -1] = gs_rela_perm # update cell-wise rela perm
loss = test_model.loss(pred, data, mean_vec_y, std_vec_y, num)
cost = cost + loss_weight_list[num] * loss # total loss, later being back-propagated
# Implement a multi-step loss
roll_out_loss += cost
if (is_validation):
#Like for the MeshGraphNets model, calculate the mask over which we calculate
#flow loss and add this calculated RMSE value to our val error
# pred gives normalized saturation increment
eval_velo = stats.unnormalize( pred.squeeze(), mean_vec_y[num], std_vec_y[num] )
gs_velo = data.y[:, num].squeeze()
if error_metric:
velo_rmse_rollout += error_metric(eval_velo, gs_velo)
else:
#error = torch.sum((eval_velo - gs_velo) ** 2, axis = -1)
error = (eval_velo - gs_velo)** 2
velo_rmse_rollout += torch.sqrt( torch.mean(error) )
num += 1
roll_out_loss /= num
velo_rmse_rollout /= num
if (args.use_rnn):
del h_0
del c_0
loss_test += roll_out_loss
velo_rmse += velo_rmse_rollout
num_loops+=1
# if velocity is evaluated, return velo_rmse as 0
return loss_test/num_loops, velo_rmse/num_loops
class objectview(object):
def __init__(self, d):
self.__dict__ = d
############################### Setup hyperparameters ##############################
def main(args, comp_args):
# find the dataset folder
root_dir = os.getcwd()
dataset_dir = os.path.join(root_dir, 'datasets')
checkpoint_dir = os.path.join(root_dir, 'best_models')
postprocess_dir = os.path.join(root_dir, 'animations')
modelsummary_dir = os.path.join(root_dir, 'model_details')
# weight loss list for multiple MGN or LSTM
if (args.loss_weight_list == ''):
# no specific loss weights is given
args.loss_weight_list = np.linspace(1.0, 1.0, args.rollout_num)
else:
args.loss_weight_list = np.array([int(item) for item in args.loss_weight_list.split(',')])
print('loss_weight_list: {}'.format(args.loss_weight_list))
if (args.model.upper() == 'LSTM'):
# rollout number * multistep size
total_step = args.rollout_num * args.step
else:
# mgn: single step rollout
total_step = args.rollout_num * args.total_ts
args.total_ts = total_step
if (args.data_name != ''):
file_path = os.path.join(dataset_dir, args.data_name)
#stats_path = os.path.join(dataset_dir, 'meshgraphnets_miniset5traj_ms.pt')
else:
args.data_name = 'mesh{}_data{}_var{}_model{}_totalTs{}_skip{}_multistep{}_{}edge_{}label_{}relPerm.pt'.format(
args.data_type,
args.hete_type,
args.var_type,
args.model,
args.total_ts,
args.skip,
args.step,
args.edge_type,
args.label_type,
args.rela_perm)
print('No input data is given. Using input parameters to find the following file \n{}'.format(args.data_name))
#raise NotImplementedError("Unknown data")
file_path = os.path.join(dataset_dir, args.data_name)
dataset = uti_func.read_process_data(file_path)
if (args.use_rnn == True):
assert args.model.upper() == 'LSTM', "model {} is wrongly given!".format(args.model)
else:
assert args.model.upper() == 'MGN', "model {} is wrongly given!".format(args.model)
## TODO: CHECK PERFORMANCE OF STAT CHANGES BY ITERATING THROUGH ALL DATASETS AND CHECKING
## THE MEAN AND VAR OF NORMALIZED DATA
# check the availability of GPU
device = args.device if torch.cuda.is_available() else 'cpu'
#args.device = device
print('Getting {}...'.format(device))
args.device = "cpu" # This is necessary for running get_stats function below
stats_list = stats.get_stats(dataset, args, comp_args)
print('stats_list: \n{}'.format(stats_list))
args.device = device
# Start the training
test_losses, losses, velo_val_losses, best_model, best_test_loss, test_loader = train(dataset, device,
stats_list, args, comp_args)
print("Min test set loss: {0}".format(min(test_losses)))
print("Minimum loss: {0}".format(min(losses)))
if (args.save_velo_val):
print("Minimum saturation validation loss: {0}".format(min(velo_val_losses)))
# Run test for our best model to save the predictions!
#test(test_loader, best_model, is_validation=False, save_model_preds=True, model_type=model)
#print()
uti_func.save_plots(args, losses, test_losses, velo_val_losses)
if __name__ == '__main__':
# Input arguments
# convert string into bool for argparser to work
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
argparser = argparse.ArgumentParser()
argparser.add_argument('--model', type=str, help='', default='LSTM') # LSTM; MGN
argparser.add_argument('--use_rnn', type=str2bool, help='', default=True) # LSTM; MGN
argparser.add_argument('--loss_type', type=str, help='', default='rmse') # RMSE; L2 not implemented yet
argparser.add_argument('--device', type=str, help='', default='cuda') # cuda could vary from cuda:0 to cuda:3 depending on how many avaialble GPUs
argparser.add_argument('--noise', type=str2bool, help='', default=False) # inject noise for one-step predictions
argparser.add_argument('--noise_scale', type=float, help='', default=0.003) # noise scale
# wandb related
argparser.add_argument('--wandb_usr', type=str, help='Weights & Biases user.')
argparser.add_argument('--project_name', type=str, help='', default='mgn_lstm') # wandb project name
# data name related
argparser.add_argument('--data_name', type=str, help='', default='', required = True)
argparser.add_argument('--data_type', type=str, help='', default='PEBI')
argparser.add_argument('--hete_type', type=str, help='', default='hete')
argparser.add_argument('--var_type', type=str, help='', default='sat')
argparser.add_argument('--rollout_num', type =int, help = '', default = 11)
argparser.add_argument('--step', type=int, help='', default=1) # Multistep number. This only makes sense when rollout is True.
# Multistep training trick for LSTM at each training step
argparser.add_argument('--total_ts', type =int, help = '', default = 11) # LSTM: args.rollout_num * args.step
# MGN: args.rollout_num * args.total_ts
argparser.add_argument('--label_type', type=str, help='', default='y') # dy incremet; y state
argparser.add_argument('--edge_type', type=str, help='', default='dist') # dist and trans
argparser.add_argument('--rela_perm', type=str, help='', default='table', required=True) # none means no rela_perm is calculated; look-up table; coery-brook equations
argparser.add_argument('--skip', type=int, help='', default=5) # skip 1 means 10 days. skip 5 means 50 days
argparser.add_argument('--node_based', type=str2bool, help='', default=False) # if the MGN is node-based, the edge-based message will not be computed
# Training related
argparser.add_argument('--node_type_index', type=int, help='', default=3) # the starting index of node type, used for locating speical nodes
# current version: sat, perm, volume, [type0, type1, type2, type3], (rela_perm)
argparser.add_argument('--batch_size', type=int, help='', default=10)
argparser.add_argument('--test_batch_size', type=int, help='', default=5)
argparser.add_argument('--num_layers', type=int, help='', default=10)
argparser.add_argument('--hidden_dim', type=int, help='', default=100)
argparser.add_argument('--epochs', type=int, help='', default=500)
argparser.add_argument('--opt', type=str, help='', default='adam')
argparser.add_argument('--opt_scheduler', type=str, help='', default='none')
argparser.add_argument('--opt_restart', type=int, help='', default=0)
argparser.add_argument('--weight_decay', type=float, help='', default=5e-4)
argparser.add_argument('--lr', type=float, help='', default=0.001)
argparser.add_argument('--loss_weight_list', help='delimited list input',
type=str, default = '') #
argparser.add_argument('--debug_log', type=int, help='', default=0) # output debug log: 0 stands for no debug info; 1 for rela info; 2 input; output shape;
argparser.add_argument('--well_weight', type=float, help='', default=0.700)
argparser.add_argument('--train_size', type=int, help='', default=450)
argparser.add_argument('--test_size', type=int, help='', default=50)
# temporal model related
argparser.add_argument('--need_edge_weight', type=str2bool, help='', default=False)
argparser.add_argument('--lstm_filter_size', type=int, help='', default=8)
argparser.add_argument('--normalized', type=str2bool, help='', default=True) # flag for using normalized input and output
argparser.add_argument('--pre_trained', type=str2bool, help='', default=False) # Import the trained meshgraphnet one-step model as a feature extractor
argparser.add_argument('--shuffle', type=str2bool, help='', default=False)
# inspection output related
argparser.add_argument('--model_name', type=str, help='', default='' )
argparser.add_argument('--save_velo_val', type=str2bool, help='', default=True)
argparser.add_argument('--save_best_model', type=str2bool, help='', default=True)
argparser.add_argument('--output_freq', type=int, help='', default=50) # every epoch losses will be printted out for inspection
# directories-related
argparser.add_argument('--modelsummary_dir', type=str, help='', default='./model_details/')
argparser.add_argument('--checkpoint_dir', type=str, help='', default='./best_models/')
argparser.add_argument('--postprocess_dir', type=str, help='', default='./2d_loss_plots/')
argparser.add_argument('--rela_perm_dir', type=str, help='', default='./tables/')
# random seed
argparser.add_argument('--seed_list', help='delimited list input',
type=str, default = '') #
argparser.add_argument('--seed', type=int, help='', default=5)
args = argparser.parse_args()
# computational arguments
for c_args in [
{'is_initial':True,
'coord_sg':'',
'coord_sw':'',
'rel_sg':'',
'rel_sw':'', },
]:
comp_args = objectview(c_args)
if (args.seed_list == ''):
# no specific seed_list is given
# no need for tuning
args.seed_list = [args.seed]
else:
args.seed_list = [int(item) for item in args.seed_list.split(',')]
for seed in args.seed_list:
# setup random seed
args.seed = seed
print('Current seed: {}'.format(args.seed))
torch.manual_seed(args.seed) #Torch
random.seed(args.seed) #Python
np.random.seed(args.seed) #NumPy
t0 = time_it()
main(args, comp_args)
t1 = time_it()
print('Took {} hrs to finish the case with seed {}'.format(np.abs(t1 - t0)/3600.0, args.seed))
args.loss_weight_list = ''
args.model_name = ''