-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
733 lines (643 loc) · 35.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import datetime
import numpy as np
import time
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import json
import os
import re
from pathlib import Path
from timm.data.mixup import Mixup
from timm.models import create_model
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from timm.utils import ModelEma
from optim_factory_ats import create_optimizer, LayerDecayValueAssigner
# from datasets import build_dataset, build_transform
from engine_entropy_loss import train_one_epoch, evaluate
from utils import NativeScalerWithGradNormCount as NativeScaler
import utils
from losses_fast import ConvNextDistillDiffPruningLoss, DistillDiffPruningLoss_dynamic
from samplers import RASampler
# from models.dyconvnext import ConvNeXt_Teacher, AdaConvNeXt
# from models.lvvit_conv_tp import LVViTDiffPruning, LVViT_Teacher
from model_ip_specific_fast import VisionTransformerDiffPruning, VisionTransformerTeacher
from lvvit_ip_specific_fast import LVViTDiffPruning, LVViT_Teacher
# from models.model_ip_specific_ats import VisionTransformerDiffPruning, VisionTransformerTeacher
## Jul 7: model_granular_fast is the original
# from models.dyswin import AdaSwinTransformer, SwinTransformer_Teacher
from calc_flops import calc_flops, throughput
import warnings
warnings.filterwarnings('ignore')
torch.set_printoptions(threshold=10000)
### RUN command
# python main.py --output_dir logs/dynamicvit_deit-s --model deit-s --input_size 224 --batch_size 256 --epochs 30 --base_rate 0.7 --lr 1e-3 --warmup_epochs 5 --auto_resume False
# python main.py --output_dir logs/dynamicvit_deit-s --model deit-s --input_size 224 --batch_size 256 --epochs 30 --base_rate 0.7 --warmup_epochs 5 --ratio_weight 5.0 --distill_weight 0.5 --clf_weight 1.0 --lr 0.001 --auto_resume False
def get_args_parser():
parser = argparse.ArgumentParser('Dynamic training script', add_help=False)
parser.add_argument('--arch', type=str)
parser.add_argument('--batch_size', default=64, type=int,
help='Per GPU batch size')
parser.add_argument('--epochs', default=300, type=int)
parser.add_argument('--update_freq', default=1, type=int,
help='gradient accumulation steps')
# Model parameters
parser.add_argument('--model', default='convnext_tiny', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--drop_path', type=float, default=0, metavar='PCT',
help='Drop path rate (default: 0.0)')
parser.add_argument('--input_size', default=224, type=int,
help='image input size')
parser.add_argument('--layer_scale_init_value', default=1e-6, type=float,
help="Layer scale initial values")
# EMA related parameters
parser.add_argument('--model_ema', type=utils.str2bool, default=True)
parser.add_argument('--model_ema_decay', type=float, default=0.9999, help='')
parser.add_argument('--model_ema_force_cpu', type=utils.str2bool, default=False, help='')
parser.add_argument('--model_ema_eval', type=utils.str2bool, default=True,
help='Using ema to eval during training.')
# Optimization parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt_eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt_betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--weight_decay_end', type=float, default=None, help="""Final value of the
weight decay. We use a cosine schedule for WD and using a larger decay by
the end of training improves performance for ViTs.""")
parser.add_argument('--lr', type=float, default=4e-3, metavar='LR',
help='learning rate (default: 4e-3), with total batch size 4096')
parser.add_argument('--layer_decay', type=float, default=1.0)
parser.add_argument('--min_lr', type=float, default=1e-6, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-6)')
parser.add_argument('--warmup_epochs', type=int, default=20, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--warmup_steps', type=int, default=-1, metavar='N',
help='num of steps to warmup LR, will overload warmup_epochs if set > 0')
# Augmentation parameters
parser.add_argument('--color_jitter', type=float, default=0.4, metavar='PCT',
help='Color jitter factor (default: 0.4)')
parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". " + "(default: rand-m9-mstd0.5-inc1)'),
parser.add_argument('--smoothing', type=float, default=0.1,
help='Label smoothing (default: 0.1)')
parser.add_argument('--train_interpolation', type=str, default='bicubic',
help='Training interpolation (random, bilinear, bicubic default: "bicubic")')
# Evaluation parameters
parser.add_argument('--crop_pct', type=float, default=None)
# * Random Erase params
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT',
help='Random erase prob (default: 0.25)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--resplit', type=utils.str2bool, default=False,
help='Do not random erase first (clean) augmentation split')
parser.add_argument('--keep_ratio', default="0.7_0.5_0.35",
help='keep ratio list')
# '--nargs-int-type', nargs = '+', type = int
# * Mixup params
parser.add_argument('--mixup', type=float, default=0.8,
help='mixup alpha, mixup enabled if > 0.')
parser.add_argument('--cutmix', type=float, default=1.0,
help='cutmix alpha, cutmix enabled if > 0.')
parser.add_argument('--cutmix_minmax', type=float, nargs='+', default=None,
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
parser.add_argument('--mixup_prob', type=float, default=1.0,
help='Probability of performing mixup or cutmix when either/both is enabled')
parser.add_argument('--mixup_switch_prob', type=float, default=0.5,
help='Probability of switching to cutmix when both mixup and cutmix enabled')
parser.add_argument('--mixup_mode', type=str, default='batch',
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
# * Finetuning params
parser.add_argument('--finetune', default='',
help='finetune from checkpoint')
parser.add_argument('--head_init_scale', default=1.0, type=float,
help='classifier head initial scale, typically adjusted in fine-tuning')
parser.add_argument('--model_key', default='model|module', type=str,
help='which key to load from saved state dict, usually model or model_ema')
parser.add_argument('--model_prefix', default='', type=str)
# Dataset parameters
parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str,
help='dataset path')
parser.add_argument('--eval_data_path', default=None, type=str,
help='dataset path for evaluation')
parser.add_argument('--nb_classes', default=1000, type=int,
help='number of the classification types')
parser.add_argument('--imagenet_default_mean_and_std', type=utils.str2bool, default=True)
parser.add_argument('--data_set', default='IMNET', choices=['CIFAR', 'IMNET', 'image_folder'],
type=str, help='ImageNet dataset path')
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default=None,
help='path where to tensorboard log')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='',
help='resume from checkpoint')
parser.add_argument('--auto_resume', type=utils.str2bool, default=False)
parser.add_argument('--save_ckpt', type=utils.str2bool, default=True)
parser.add_argument('--save_ckpt_freq', default=1, type=int)
parser.add_argument('--save_ckpt_num', default=3, type=int)
parser.add_argument('--sharing', default='',
help='how layers are shared')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', type=utils.str2bool, default=False,
help='Perform evaluation only')
parser.add_argument('--dist_eval', type=utils.str2bool, default=True,
help='Enabling distributed evaluation')
parser.add_argument('--disable_eval', type=utils.str2bool, default=False,
help='Disabling evaluation during training')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', type=utils.str2bool, default=True,
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', type=utils.str2bool, default=False)
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
parser.add_argument('--use_amp', type=utils.str2bool, default=True,
help="Use PyTorch's AMP (Automatic Mixed Precision) or not")
parser.add_argument('--throughput', action='store_true')
parser.add_argument('--lr_scale', type=float, default=0.01)
parser.add_argument('--base_rate', type=float, default='0.9')
parser.add_argument('--ratio_weight', type=float, default='2.0')
parser.add_argument('--clf_weight', type=float, default='2.0')
parser.add_argument('--distill_weight', type=float, default='2.0')
parser.add_argument('--num_heads', type=int, default=6)
return parser
def main(args):
# utils.init_distributed_mode(args)
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
keep_list = args.keep_ratio.split("_")
keep_list_float = []
for i in range(len(keep_list)):
keep_list_float.append(float(keep_list[i]))
sharing_list = args.sharing.split("_")
if sharing_list[0] is not '0':
layer_configs = []
print(f'length {len(sharing_list)} {sharing_list}')
for i in range(len(sharing_list)):
layer_configs.append(int(sharing_list[i]))
else:
layer_configs = []
# sharing = args.sharing.split("-")
#
# for i in range(len(sharing)):
# if sharing[i] == 'X':
# sharing[i] = None
# elif sharing[i] == 'Q':
# sharing[i] = 'qk'
# elif sharing[i] == 'S':
# sharing[i] = 'sqk'
# elif sharing[i] == 'A':
# sharing[i] = 'sqkv'
# dataset_train, args.nb_classes = build_dataset(is_train=True, args=args)
# if args.disable_eval:
# args.dist_eval = False
# dataset_val = None
# else:
# dataset_val, _ = build_dataset(is_train=False, args=args)
#
# args.nb_classes = 1000
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
# sampler_train = torch.utils.data.DistributedSampler(
# dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True, seed=args.seed,
# )
# print("Sampler_train = %s" % str(sampler_train))
# if args.dist_eval:
# if len(dataset_val) % num_tasks != 0:
# print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
# 'This will slightly alter validation results as extra duplicate entries are added to achieve '
# 'equal num of samples per-process.')
# sampler_val = torch.utils.data.DistributedSampler(
# dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False)
# else:
# sampler_val = torch.utils.data.SequentialSampler(dataset_val)
if global_rank == 0 and args.log_dir is not None:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = utils.TensorboardLogger(log_dir=args.log_dir)
else:
log_writer = None
if args.data_set == 'IMNET':
import load_imagenet100_ffcv as img_ffcv
batch_size = args.batch_size
distributed = 0
in_memory = 1
num_workers = args.num_workers
train_dataset = '/gpfs/gibbs/project/panda/shared/imagenet_ffcv/train_jpg.beton' # imagenet100_ffcv/train_500_0.50_90.ffcv'
val_dataset = '/gpfs/gibbs/project/panda/shared/imagenet_ffcv/val.beton' # imagenet100_ffcv/val_500_0.50_90.ffcv'
data_loader_train = img_ffcv.create_train_loader(train_dataset, num_workers, batch_size,
distributed, in_memory)
if args.disable_eval:
data_loader_val = None
else:
data_loader_val = img_ffcv.create_val_loader(val_dataset, num_workers, batch_size, distributed)
args.nb_classes = 1000
# data_loader_train = torch.utils.data.DataLoader(
# dataset_train, sampler=sampler_train,
# batch_size=args.batch_size,
# num_workers=args.num_workers,
# pin_memory=args.pin_mem,
# drop_last=True,
# )
# if dataset_val is not None:
# data_loader_val = torch.utils.data.DataLoader(
# dataset_val, sampler=sampler_val,
# batch_size=int(1.5 * args.batch_size),
# num_workers=args.num_workers,
# pin_memory=args.pin_mem,
# drop_last=False
# )
# else:
# data_loader_val = None
mixup_fn = None
# mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
# if mixup_active:
# print("Mixup is activated!")
# mixup_fn = Mixup(
# mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
# prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
# label_smoothing=args.smoothing, num_classes=args.nb_classes)
if mixup_fn is not None:
# smoothing is handled with mixup label transform
criterion = SoftTargetCrossEntropy()
elif args.smoothing > 0.:
criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
else:
criterion = torch.nn.CrossEntropyLoss()
print(args.model)
SPARSE_RATIO = [args.base_rate, args.base_rate - 0.2, args.base_rate - 0.4]
if args.model == 'convnext-t':
model = AdaConvNeXt(sparse_ratio=SPARSE_RATIO,
pruning_loc=[1, 2, 3],
drop_path_rate=args.drop_path,
layer_scale_init_value=args.layer_scale_init_value,
head_init_scale=args.head_init_scale,
num_classes=args.nb_classes)
teacher_model = ConvNeXt_Teacher()
pretrained = torch.load('./pretrained/convnext_tiny_1k_224_ema.pth', map_location='cpu')
elif args.model == 'convnext-s':
model = AdaConvNeXt(sparse_ratio=SPARSE_RATIO,
pruning_loc=[3, 6, 9],
drop_path_rate=args.drop_path,
layer_scale_init_value=args.layer_scale_init_value,
head_init_scale=args.head_init_scale,
num_classes=args.nb_classes,
depths=[3, 3, 27, 3])
teacher_model = ConvNeXt_Teacher(depths=[3, 3, 27, 3])
pretrained = torch.load('./pretrained/convnext_small_1k_224_ema.pth', map_location='cpu')
elif args.model == 'convnext-b':
model = AdaConvNeXt(sparse_ratio=SPARSE_RATIO,
pruning_loc=[3, 6, 9],
drop_path_rate=args.drop_path,
layer_scale_init_value=args.layer_scale_init_value,
head_init_scale=args.head_init_scale,
num_classes=args.nb_classes,
depths=[3, 3, 27, 3],
dims=[128, 256, 512, 1024])
teacher_model = ConvNeXt_Teacher(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024])
pretrained = torch.load('./pretrained/convnext_base_1k_224_ema.pth', map_location='cpu')
elif args.model == 'lvvit-s':
PRUNING_LOC = [4, 8, 12]
# layer_configs = sharing
KEEP_RATE = keep_list_float #[SPARSE_RATIO[0], SPARSE_RATIO[0] ** 2, SPARSE_RATIO[0] ** 3]
print('token_ratio =', KEEP_RATE, 'at layer', PRUNING_LOC)
model = LVViTDiffPruning(
patch_size=16, embed_dim=384, depth=16, num_heads=6, mlp_ratio=3.,
p_emb='4_2', skip_lam=2., return_dense=True, mix_token=True,
pruning_loc=PRUNING_LOC, token_ratio=KEEP_RATE, distill=True, layer_configs=layer_configs)
pretrained_shared = torch.load('../../pretrained/lvvit_s-26M-224-83.3.pth.tar', map_location='cpu')
pretrained = torch.load('../../pretrained/lvvit_s-26M-224-83.3.pth.tar', map_location='cpu')
teacher_model = LVViT_Teacher(
patch_size=16, embed_dim=384, depth=16, num_heads=6, mlp_ratio=3.,
p_emb='4_2', skip_lam=2., return_dense=True, mix_token=True
)
elif args.model == 'lvvit-m':
PRUNING_LOC = [5, 10, 15]
KEEP_RATE = [SPARSE_RATIO[0], SPARSE_RATIO[0] ** 2, SPARSE_RATIO[0] ** 3]
print('token_ratio =', KEEP_RATE, 'at layer', PRUNING_LOC)
model = LVViTDiffPruning(
patch_size=16, embed_dim=512, depth=20, num_heads=8, mlp_ratio=3.,
p_emb='4_2', skip_lam=2., return_dense=True, mix_token=True,
pruning_loc=PRUNING_LOC, token_ratio=KEEP_RATE, distill=True
)
pretrained = torch.load('./pretrained/lvvit_m-56M-224-84.0.pth', map_location='cpu')
teacher_model = LVViT_Teacher(
patch_size=16, embed_dim=512, depth=20, num_heads=8, mlp_ratio=3.,
p_emb='4_2', skip_lam=2., return_dense=True, mix_token=True
)
elif args.model == 'deit-s':
PRUNING_LOC = [3,6,9]
# layer_configs = layer_configs
KEEP_RATE = keep_list_float #args.keep_ratio
print('token_ratio =', KEEP_RATE, 'at layer', PRUNING_LOC)
model = VisionTransformerDiffPruning(
patch_size=16, embed_dim=384, depth=12, num_heads=args.num_heads, mlp_ratio=4, qkv_bias=True,
pruning_loc=PRUNING_LOC, token_ratio=KEEP_RATE, distill=True, layer_configs=layer_configs
)
# pretrained_shared = torch.load('./pretrained/dynamic-vit_384_r0.7.pth',
# map_location='cpu') # pretrained_with_sharing[(0, 1)] pretrained_with_sharing[(4, 5, 6)]
pretrained_shared = torch.load('../pretrained/deit_small_patch16_224-cd65a155.pth', map_location='cpu')
pretrained = torch.load('../pretrained/deit_small_patch16_224-cd65a155.pth', map_location='cpu')
teacher_model = VisionTransformerTeacher(
patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True)
elif args.model == 'deit-256':
PRUNING_LOC = [3,6,9]
KEEP_RATE = keep_list_float
print('token_ratio =', KEEP_RATE, 'at layer', PRUNING_LOC)
model = VisionTransformerDiffPruning(
patch_size=16, embed_dim=256, depth=12, num_heads=4, mlp_ratio=4, qkv_bias=True,
pruning_loc=PRUNING_LOC, token_ratio=KEEP_RATE, distill=True, layer_configs=layer_configs
)
pretrained_shared = torch.load('../pretrained/dynamic-vit_256_r0.7.pth', map_location='cpu')
pretrained = torch.load('../pretrained/dynamic-vit_256_r0.7.pth', map_location='cpu')
teacher_model = VisionTransformerTeacher(
patch_size=16, embed_dim=256, depth=12, num_heads=4, mlp_ratio=4, qkv_bias=True)
elif args.model == 'deit-b':
PRUNING_LOC = [3, 6, 9]
KEEP_RATE = [SPARSE_RATIO[0], SPARSE_RATIO[0] ** 2, SPARSE_RATIO[0] ** 3]
print('token_ratio =', KEEP_RATE, 'at layer', PRUNING_LOC)
model = VisionTransformerDiffPruning(
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
pruning_loc=PRUNING_LOC, token_ratio=KEEP_RATE, distill=True, drop_path_rate=args.drop_path
)
pretrained = torch.load('./pretrained/deit_base_patch16_224-b5f2ef4d.pth', map_location='cpu')
teacher_model = VisionTransformerTeacher(
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True)
elif args.model == 'swin-t':
model = AdaSwinTransformer(
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
drop_rate=0.0,
drop_path_rate=args.drop_path,
pruning_loc=[1, 2, 3], sparse_ratio=SPARSE_RATIO
)
pretrained = torch.load('./pretrained/swin_tiny_patch4_window7_224.pth', map_location='cpu')
teacher_model = SwinTransformer_Teacher(
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7)
elif args.model == 'swin-s':
model = AdaSwinTransformer(
embed_dim=96,
depths=[2, 2, 18, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
drop_rate=0.0,
drop_path_rate=args.drop_path,
pruning_loc=[2, 4, 6], sparse_ratio=SPARSE_RATIO
)
pretrained = torch.load('./pretrained/swin_small_patch4_window7_224.pth', map_location='cpu')
teacher_model = SwinTransformer_Teacher(
embed_dim=96,
depths=[2, 2, 18, 2],
num_heads=[3, 6, 12, 24],
window_size=7)
elif args.model == 'swin-b':
model = AdaSwinTransformer(
embed_dim=128,
depths=[2, 2, 18, 2],
num_heads=[4, 8, 16, 32],
window_size=7,
drop_rate=0.0,
drop_path_rate=args.drop_path,
pruning_loc=[2, 4, 6], sparse_ratio=SPARSE_RATIO
)
pretrained = torch.load('./pretrained/swin_base_patch4_window7_224.pth', map_location='cpu')
teacher_model = SwinTransformer_Teacher(
embed_dim=128,
depths=[2, 2, 18, 2],
num_heads=[4, 8, 16, 32],
window_size=7)
if 'convnext' in args.model or 'deit' in args.model or 'swin' in args.model:
pretrained = pretrained['model']
pretrained_shared = pretrained_shared['model']
utils.load_state_dict(model, pretrained_shared)
utils.load_state_dict(teacher_model, pretrained)
teacher_model.eval()
teacher_model = teacher_model.to(device)
print('success load teacher model weight')
if 'convnext' in args.model:
criterion = ConvNextDistillDiffPruningLoss(
teacher_model, criterion, clf_weight=1.0, keep_ratio=SPARSE_RATIO, mse_token=True, ratio_weight=10.0)
elif 'swin' in args.model:
criterion = ConvNextDistillDiffPruningLoss(
teacher_model, criterion, clf_weight=1.0, keep_ratio=SPARSE_RATIO, mse_token=True, ratio_weight=10.0,
swin_token=True)
elif 'lvvit' in args.model:
criterion = DistillDiffPruningLoss_dynamic(
teacher_model, criterion, clf_weight=1.0, keep_ratio=KEEP_RATE, mse_token=False, ratio_weight=2.0,
distill_weight=0.5
)
elif 'deit' in args.model:
criterion = DistillDiffPruningLoss_dynamic(
teacher_model, criterion, clf_weight=args.clf_weight, keep_ratio=KEEP_RATE, mse_token=True,
ratio_weight=args.ratio_weight, distill_weight=args.distill_weight
)
model.train()
# print(pretrained.keys())
# if utils.is_main_process():
# flops = calc_flops(model, args.input_size)
# print('FLOPs: {}'.format(flops))
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e6
print('number of params:', n_parameters)
if args.finetune:
if args.finetune.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.finetune, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.finetune, map_location='cpu')
print("Load ckpt from %s" % args.finetune)
checkpoint_model = None
for model_key in args.model_key.split('|'):
if model_key in checkpoint:
checkpoint_model = checkpoint[model_key]
print("Load state_dict by model_key = %s" % model_key)
break
if checkpoint_model is None:
checkpoint_model = checkpoint
state_dict = model.state_dict()
for k in ['head.weight', 'head.bias']:
if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
print(f"Removing key {k} from pretrained checkpoint")
del checkpoint_model[k]
utils.load_state_dict(model, checkpoint_model, prefix=args.model_prefix)
model.to(device)
if utils.is_main_process() and args.throughput:
print('# throughput test')
image = torch.randn(32, 3, args.input_size, args.input_size)
throughput(image, model)
del image
import sys
sys.exit(1)
model_ema = None
if args.model_ema:
# Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
model_ema = ModelEma(
model,
decay=args.model_ema_decay,
device='cpu' if args.model_ema_force_cpu else '',
resume='')
print("Using EMA with decay = %.8f" % args.model_ema_decay)
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("Model = %s" % str(model_without_ddp))
print('number of params:', n_parameters)
total_batch_size = args.batch_size * args.update_freq * utils.get_world_size()
num_training_steps_per_epoch = len(data_loader_train) # // total_batch_size
print("LR = %.8f" % args.lr)
print("Batch size (total_batch_size) = %d" % total_batch_size)
print("Update frequent = %d" % args.update_freq)
print("Number of training examples = %d (Warning: CORRECT THIS)" % (len(data_loader_train)))
print("Number of training training per epoch = %d" % num_training_steps_per_epoch)
if args.layer_decay < 1.0 or args.layer_decay > 1.0:
num_layers = 12 # convnext layers divided into 12 parts, each with a different decayed lr value.
assert args.model in ['convnext_small', 'convnext_base', 'convnext_large', 'convnext_xlarge'], \
"Layer Decay impl only supports convnext_small/base/large/xlarge"
assigner = LayerDecayValueAssigner(
list(args.layer_decay ** (num_layers + 1 - i) for i in range(num_layers + 2)))
else:
assigner = None
if assigner is not None:
print("Assigned values = %s" % str(assigner.values))
# if args.distributed:
# model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=False)
# model_without_ddp = model.module
# print(model.)
optimizer = create_optimizer(
args, model_without_ddp, skip_list=None, filter_bias_and_bn=True,
get_num_layer=assigner.get_layer_id if assigner is not None else None,
get_layer_scale=assigner.get_scale if assigner is not None else None,
bone_lr_scale=args.lr_scale)
loss_scaler = NativeScaler() # if args.use_amp is False, this won't be used
print("Use Cosine LR scheduler")
lr_schedule_values = utils.cosine_scheduler(
args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch,
warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps,
)
if args.weight_decay_end is None:
args.weight_decay_end = args.weight_decay
wd_schedule_values = utils.cosine_scheduler(
args.weight_decay, args.weight_decay_end, args.epochs, num_training_steps_per_epoch)
print("Max WD = %.7f, Min WD = %.7f" % (max(wd_schedule_values), min(wd_schedule_values)))
print("criterion = %s" % str(criterion))
max_accuracy = 0.0
if args.model_ema and args.model_ema_eval:
max_accuracy_ema = 0.0
max_accuracy, max_accuracy_ema = utils.auto_load_model(
args=args, model=model, model_without_ddp=model_without_ddp,
optimizer=optimizer, loss_scaler=loss_scaler, model_ema=model_ema)
if args.eval:
print(f"Eval only mode")
test_stats = evaluate(data_loader_val, model, device, use_amp=args.use_amp)
print(
f"Accuracy of the network on {len(data_loader_val) * args.batch_size} test images: {test_stats['acc1']:.5f}%")
return
print("Start training for %d epochs" % args.epochs)
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
# if args.distributed:
# data_loader_train.sampler.set_epoch(epoch)
if log_writer is not None:
log_writer.set_step(epoch * num_training_steps_per_epoch * args.update_freq)
train_stats = train_one_epoch(
model, criterion, data_loader_train, optimizer,
device, epoch, loss_scaler, args.clip_grad, model_ema, mixup_fn,
log_writer=log_writer, start_steps=epoch * num_training_steps_per_epoch,
lr_schedule_values=lr_schedule_values, wd_schedule_values=wd_schedule_values,
num_training_steps_per_epoch=num_training_steps_per_epoch, update_freq=args.update_freq,
use_amp=args.use_amp
)
if data_loader_val is not None:
test_stats = evaluate(data_loader_val, model, device, use_amp=True)
# test_stats = evaluate(data_loader_val, model, device, epoch, reuse_pattern=[],
# use_amp=args.use_amp)
print(
f"Accuracy of the model on the {len(data_loader_val) * args.batch_size} test images: {test_stats['acc1']:.1f}%")
if max_accuracy < test_stats["acc1"]:
max_accuracy = test_stats["acc1"]
if args.output_dir and args.save_ckpt:
utils.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch="best", model_ema=model_ema, best_acc=max_accuracy,
best_acc_ema=max_accuracy_ema)
print(f'Max accuracy: {max_accuracy:.2f}%')
if log_writer is not None:
log_writer.update(test_acc1=test_stats['acc1'], head="perf", step=epoch)
log_writer.update(test_acc5=test_stats['acc5'], head="perf", step=epoch)
log_writer.update(test_loss=test_stats['loss'], head="perf", step=epoch)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
# repeat testing routines for EMA, if ema eval is turned on
if args.model_ema and args.model_ema_eval:
test_stats_ema = evaluate(data_loader_val, model_ema.ema, device, use_amp=True)
# test_stats_ema = evaluate(data_loader_val, model_ema.ema, device, epoch, reuse_pattern=[],
# use_amp=args.use_amp)
print(
f"Accuracy of the model EMA on {len(data_loader_val) * args.batch_size} test images: {test_stats_ema['acc1']:.1f}%")
if max_accuracy_ema < test_stats_ema["acc1"]:
max_accuracy_ema = test_stats_ema["acc1"]
if args.output_dir and args.save_ckpt:
utils.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch="best-ema", model_ema=model_ema, best_acc=max_accuracy,
best_acc_ema=max_accuracy_ema)
print(f'Max EMA accuracy: {max_accuracy_ema:.2f}%')
if log_writer is not None:
log_writer.update(test_acc1_ema=test_stats_ema['acc1'], head="perf", step=epoch)
log_stats.update({**{f'test_{k}_ema': v for k, v in test_stats_ema.items()}})
else:
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir and args.save_ckpt:
if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs:
utils.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, model_ema=model_ema, best_acc=max_accuracy,
best_acc_ema=max_accuracy_ema)
if args.output_dir and utils.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
print('hello hola')
parser = argparse.ArgumentParser('Dynamic training script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)