-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
361 lines (307 loc) · 13.6 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
import argparse
import datetime
import numpy as np
import time
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import json
from pathlib import Path
# from timm.data import Mixup
# from timm.models import create_model
# from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
# from timm.scheduler import create_scheduler
# from timm.optim import create_optimizer
# from timm.utils import NativeScaler, get_state_dict, ModelEma
# from datasets import build_dataset
# from Raspi_run.engine_raspi import train_one_epoch, evaluate
# from Raspi_run.samplers_raspi import RASampler
# from functools import partial
from model_deits_quant import VisionTransformerDiffPruning
# from model_extract_attention_only import VisionTransformerDiffPruning
# from model_encoder_prune import VisionTransformerDiffPruning
# from model_dyvit_orig import VisionTransformerDiffPruning
# from models.dylvvit import LVViTDiffPruning
# from models.dyconvnext import AdaConvNeXt
# from models.dyswin import AdaSwinTransformer
import utils
def get_args_parser():
parser = argparse.ArgumentParser('DeiT training and evaluation script', add_help=False)
parser.add_argument('--batch_size', default=128, type=int)
parser.add_argument('--model', default='deit-s', type=str, help='Name of model to train')
parser.add_argument('--input_size', default=224, type=int, help='images input size')
parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str,
help='dataset path')
parser.add_argument('--data_set', default='IMNET', choices=['CIFAR', 'IMNET', 'INAT', 'INAT19'],
type=str, help='Image Net dataset path')
parser.add_argument('--imagenet_default_mean_and_std', type=utils.str2bool, default=True)
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--model_path', default='../pretrained/dynamic-vit_384_r0.7.pth', help='resume from checkpoint')
parser.add_argument('--crop_pct', type=float, default=None)
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin-mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
parser.add_argument('--base_rate', type=float, default=0.7)
parser.add_argument('--keep_ratio', default="1_1_1",
help='keep ratio list')
parser.add_argument('--sharing', default='0',
help='how layers are shared')
return parser
def main(args):
cudnn.benchmark = True
# dataset_val, _ = build_dataset(is_train=False, args=args)
import load_imagenet100_ffcv as img_ffcv
batch_size = args.batch_size
distributed = 0
in_memory = 1
num_workers = 4
val_dataset = '/gpfs/gibbs/project/panda/shared/imagenet_ffcv/val.beton'
data_loader_val = img_ffcv.create_val_loader(val_dataset, num_workers, batch_size, distributed)
# data_loader_val = torch.utils.data.DataLoader(
# dataset_val,
# batch_size=args.batch_size,
# num_workers=args.num_workers,
# pin_memory=args.pin_mem,
# drop_last=False
# )
# base_rate = args.base_rate
# KEEP_RATE1 = [base_rate, base_rate ** 2, base_rate ** 3]
# KEEP_RATE2 = [base_rate, base_rate - 0.2, base_rate - 0.4]
keep_list = args.keep_ratio.split("_")
keep_list_float = []
for i in range(len(keep_list)):
keep_list_float.append(float(keep_list[i]))
sharing_list = args.sharing.split("_")
if sharing_list[0] is not '0':
layer_configs = []
print(f'################################### length {len(sharing_list)} {sharing_list}')
for i in range(len(sharing_list)):
layer_configs.append(int(sharing_list[i]))
else:
layer_configs = []
print(f"Creating model: {args.model}")
if args.model == 'deit-s':
PRUNING_LOC = [3,6,9]
# layer_configs = layer_configs
KEEP_RATE = keep_list_float #args.keep_ratio
print('token_ratio =', KEEP_RATE, 'at layer', PRUNING_LOC)
model = VisionTransformerDiffPruning(
patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True,
pruning_loc=PRUNING_LOC, token_ratio=KEEP_RATE, distill=True, layer_configs=layer_configs)
# )
# pretrained_shared = torch.load('./pretrained/dynamic-vit_384_r0.7.pth',
# map_location='cpu') # pretrained_with_sharing[(0, 1)] pretrained_with_sharing[(4, 5, 6)]
# pretrained_shared = torch.load('./deit_small_patch16_224-cd65a155.pth', map_location='cpu')
pretrained = torch.load('../pretrained/dynamic-vit_384_r0.7.pth', map_location='cpu')
# pretrained = torch.load('../pretrained/deit_small_patch16_224-cd65a155.pth', map_location='cpu')
# model.load_state_dict(pretrained)
# teacher_model = VisionTransformerTeacher(
# patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True)
# if args.model == 'deit-s':
# PRUNING_LOC = [3,6,9]
# # layer_configs = layer_configs
# KEEP_RATE = keep_list_float #args.keep_ratio
# print('token_ratio =', KEEP_RATE, 'at layer', PRUNING_LOC)
# model = VisionTransformerDiffPruning(
# patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True,
# pruning_loc=PRUNING_LOC, token_ratio=KEEP_RATE, distill=True, layer_configs=layer_configs
# )
# pretrained_shared = torch.load(args.model_path, map_location='cpu')
#
# utils.load_state_dict(model, pretrained_shared)
elif args.model == 'deit-256':
PRUNING_LOC = [3,6,9]
print('token_ratio =', KEEP_RATE1, 'at layer', PRUNING_LOC)
model = VisionTransformerDiffPruning(
patch_size=16, embed_dim=256, depth=12, num_heads=4, mlp_ratio=4, qkv_bias=True,
pruning_loc=PRUNING_LOC, token_ratio=KEEP_RATE1
)
elif args.model == 'deit-b':
PRUNING_LOC = [3,6,9]
print('token_ratio =', KEEP_RATE1, 'at layer', PRUNING_LOC)
model = VisionTransformerDiffPruning(
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
pruning_loc=PRUNING_LOC, token_ratio=KEEP_RATE1
)
elif args.model == 'lvvit-s':
PRUNING_LOC = [4,8,12]
print('token_ratio =', KEEP_RATE1, 'at layer', PRUNING_LOC)
model = LVViTDiffPruning(
patch_size=16, embed_dim=384, depth=16, num_heads=6, mlp_ratio=3.,
p_emb='4_2',skip_lam=2., return_dense=True,mix_token=True,
pruning_loc=PRUNING_LOC, token_ratio=KEEP_RATE1
)
elif args.model == 'lvvit-m':
PRUNING_LOC = [5,10,15]
print('token_ratio =', KEEP_RATE1, 'at layer', PRUNING_LOC)
model = LVViTDiffPruning(
patch_size=16, embed_dim=512, depth=20, num_heads=8, mlp_ratio=3.,
p_emb='4_2',skip_lam=2., return_dense=True,mix_token=True,
pruning_loc=PRUNING_LOC, token_ratio=KEEP_RATE1
)
elif args.model == 'convnext-t':
PRUNING_LOC = [1,2,3]
print('token_ratio =', KEEP_RATE2, 'at layer', PRUNING_LOC)
model = AdaConvNeXt(
sparse_ratio=KEEP_RATE2, pruning_loc=PRUNING_LOC
)
elif args.model == 'convnext-s':
PRUNING_LOC = [3,6,9]
print('token_ratio =', KEEP_RATE2, 'at layer', PRUNING_LOC)
model = AdaConvNeXt(
sparse_ratio=KEEP_RATE2, pruning_loc=PRUNING_LOC,
depths=[3, 3, 27, 3]
)
elif args.model == 'convnext-b':
PRUNING_LOC = [3,6,9]
print('token_ratio =', KEEP_RATE2, 'at layer', PRUNING_LOC)
model = AdaConvNeXt(
sparse_ratio=KEEP_RATE2, pruning_loc=PRUNING_LOC,
depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024]
)
elif args.model == 'swin-t':
PRUNING_LOC = [1,2,3]
print('token_ratio =', KEEP_RATE2, 'at layer', PRUNING_LOC)
model = AdaSwinTransformer(
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
drop_rate=0.0,
pruning_loc=[1,2,3], sparse_ratio=KEEP_RATE2
)
elif args.model == 'swin-s':
PRUNING_LOC = [2,4,6]
print('token_ratio =', KEEP_RATE2, 'at layer', PRUNING_LOC)
model = AdaSwinTransformer(
embed_dim=96,
depths=[2, 2, 18, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
drop_rate=0.0,
drop_path_rate=args.drop_path,
pruning_loc=[2,4,6], sparse_ratio=KEEP_RATE2
)
elif args.model == 'swin-b':
PRUNING_LOC = [2,4,6]
print('token_ratio =', KEEP_RATE2, 'at layer', PRUNING_LOC)
model = AdaSwinTransformer(
embed_dim=128,
depths=[2, 2, 18, 2],
num_heads=[4, 8, 16, 32],
window_size=7,
drop_rate=0.0,
drop_path_rate=args.drop_path,
pruning_loc=[2,4,6], sparse_ratio=KEEP_RATE2
)
else:
raise NotImplementedError
# model_path = args.model_path
# # model_path = './logs/X-X-X-X-Q-X-X-Q-X-X-Q-X/checkpoint-best-ema.pth'
# checkpoint = torch.load(model_path, map_location="cpu")
model.load_state_dict(pretrained["model"])
print('## model has been successfully loaded')
model = model.cuda()
n_parameters = sum(p.numel() for p in model.parameters())
print('number of params:', n_parameters)
criterion = torch.nn.CrossEntropyLoss().cuda()
validate(data_loader_val, model, criterion)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def validate(val_loader, model, criterion):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
model.eval()
progress = ProgressMeter(
len(val_loader),
[batch_time, losses, top1, top5],
prefix='Test: ')
with torch.cuda.amp.autocast():
with torch.no_grad():
end = time.time()
for i, (images, target) in enumerate(val_loader):
start_time = time.time()
images = images.cuda()
target = target.cuda()
end_time = time.time()
execution_time = end_time - start_time
# print("loading time:", execution_time, "seconds")
# compute output
start_time = time.time()
output = model(images)
end_time = time.time()
execution_time = end_time - start_time
# print("Execution time:", execution_time, "seconds")
start_time = time.time()
loss = criterion(output, target)
end_time = time.time()
execution_time = end_time - start_time
# print("Loss time:", execution_time, "seconds")
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % 20 == 0:
progress.display(i)
# TODO: this should also be done with the ProgressMeter
print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return top1.avg
if __name__ == '__main__':
parser = argparse.ArgumentParser('Dynamic evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
main(args)