-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
188 lines (110 loc) · 4.33 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from fastapi import FastAPI
import cv2
from starlette.responses import StreamingResponse
import torch
import mediapipe as mp
import numpy as np
from model import TransformerNet
FG_STYLE = None
BG_STYLE = None
keep_cam_on = True
cam = None
def to_torch_tensor(img_arr):
img_arr = torch.from_numpy(img_arr).float()
img_arr = img_arr.permute(2, 0, 1).unsqueeze(0)
return img_arr
def to_numpy_array(img_arr):
img_arr = img_arr.squeeze().permute(1, 2, 0)
img_arr = img_arr.clamp(0, 255)
img_arr = img_arr.numpy().astype('uint8')
return img_arr
model_1 = TransformerNet().cuda()
model_2 = TransformerNet().cuda()
model_3 = TransformerNet().cuda()
model_4 = TransformerNet().cuda()
model_5 = TransformerNet().cuda()
model_1.load_state_dict(torch.load('models/scream_first.pth'))
model_2.load_state_dict(torch.load('models/starry_night.pth'))
model_3.load_state_dict(torch.load('models/wave.pth'))
model_4.load_state_dict(torch.load('models/untouched.pth'))
model_5.load_state_dict(torch.load('models/muse.pth'))
models = {
'scream': model_1,
'starry_night': model_2,
'wave': model_3,
'untouched': model_4,
'muse': model_5,
}
app = FastAPI()
@app.get('/')
async def hello():
global keep_cam_on
keep_cam_on = True
return StreamingResponse(gen(), media_type="multipart/x-mixed-replace; boundary=frame")
@app.get('/turn_cam_off')
async def turn_cam_off():
global keep_cam_on
global FG_STYLE
global BG_STYLE
keep_cam_on = False
FG_STYLE = None
BG_STYLE = None
try:
cam.release()
except:
return {"cam": "camera is not turned on yet"}
return {"cam": "off"}
@app.get('/set_fg_style/{style}')
async def set_fg_style(style: str):
global FG_STYLE
FG_STYLE = style
return {'fg_style': FG_STYLE}
@app.get('/set_bg_style/{style}')
async def set_bg_style(style: str):
global BG_STYLE
BG_STYLE = style
return {'bg_style': BG_STYLE}
@app.get('/reset_styles')
async def reset_styles():
global BG_STYLE
global FG_STYLE
BG_STYLE = FG_STYLE = None
mp_selfie_segmentation = mp.solutions.selfie_segmentation
def gen():
global cam
cam = cv2.VideoCapture(0)
# ret, frame = cam.read()
with mp_selfie_segmentation.SelfieSegmentation(
model_selection=0) as selfie_segmentation:
while keep_cam_on:
ret, frame = cam.read()
if FG_STYLE == None and BG_STYLE==None:
final_frame = frame
elif FG_STYLE == BG_STYLE:
final_frame = to_torch_tensor(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
final_frame = models[FG_STYLE](final_frame.cuda())
final_frame = to_numpy_array(final_frame.detach().cpu())
final_frame = cv2.cvtColor(final_frame, cv2.COLOR_RGB2BGR)
else:
results = selfie_segmentation.process(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
seg_mask = np.expand_dims((results.segmentation_mask > 0.5), axis=2)
if FG_STYLE == None:
fg_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
else:
fg_frame = to_torch_tensor(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
fg_frame = models[FG_STYLE](fg_frame.cuda())
fg_frame = to_numpy_array(fg_frame.detach().cpu())
if BG_STYLE == None:
bg_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
else:
bg_frame = to_torch_tensor(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
bg_frame = models[BG_STYLE](bg_frame.cuda())
bg_frame = to_numpy_array(bg_frame.detach().cpu())
final_frame = (fg_frame * seg_mask) + (bg_frame * ~seg_mask)
final_frame = cv2.cvtColor(final_frame, cv2.COLOR_RGB2BGR)
flag, encoded_frame = cv2.imencode('.jpg', final_frame)
if not flag:
continue
yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' +
bytearray(encoded_frame) + b'\r\n')
cam.release()