-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcluster_butina.py
executable file
·290 lines (236 loc) · 11.7 KB
/
cluster_butina.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
#!/usr/bin/env python
# Copyright 2022 Informatics Matters Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse, time
from rdkit import DataStructs, rdBase
from rdkit.Chem import AllChem, MACCSkeys
from rdkit.ML.Cluster import Butina
import utils
import rdkit_utils
from dm_job_utilities.dm_log import DmLog
descriptors = {
'maccs': lambda m: MACCSkeys.GenMACCSKeys(m),
'morgan2': lambda m: AllChem.GetMorganFingerprintAsBitVect(m, 2, 1024),
'morgan3': lambda m: AllChem.GetMorganFingerprintAsBitVect(m, 3, 1024),
'rdkit': lambda m: AllChem.RDKFingerprint(m)
}
metrics = {
'braunblanquet': DataStructs.BulkBraunBlanquetSimilarity,
'cosine': DataStructs.BulkCosineSimilarity,
'dice': DataStructs.BulkDiceSimilarity,
'kulczynski': DataStructs.BulkKulczynskiSimilarity,
'mcconnaughey': DataStructs.BulkMcConnaugheySimilarity,
'rogotgoldberg': DataStructs.BulkRogotGoldbergSimilarity,
'russel': DataStructs.BulkRusselSimilarity,
'sokal': DataStructs.BulkSokalSimilarity,
'tanimoto': DataStructs.BulkTanimotoSimilarity
}
# start field name definitions #########################################
field_Cluster = "Cluster"
# functions ############################################################
def cluster_fps(fps, metric, cutoff):
# first generate the distance matrix:
dists = []
# dist is the part of the distance matrix below the diagonal as an array:
# 1.0, 2.0, 2.1, 3.0, 3.1, 3.2 ...
nfps = len(fps)
matrix = []
for i in range(1, nfps):
sims = metric(fps[i], fps[:i])
dists.extend([1-x for x in sims])
matrix.append(sims)
# now cluster the data:
cs = Butina.ClusterData(dists, nfps, cutoff, isDistData=True)
return cs, dists, matrix
def clusters_to_map(clusters):
d = {}
i = 0
for c in clusters:
for id in c:
d[id] = i
i += 1
return d
def fetch_score(idx, mols, field, descending):
if descending:
return 0 - mols[idx].GetDoubleProp(field)
else:
return mols[idx].GetDoubleProp(field)
def select_diverse_subset(mols, clusters, distances, count, field, descending, score):
t0 = time.time()
total = len(mols)
num_clusters = len(clusters)
picked_list = []
clusters_list = []
for i in range(0, num_clusters):
picked_list.append([])
if field:
filtered_by_value = [x for x in clusters[i] if mols[x].HasProp(field)]
sorted_by_value = sorted(filtered_by_value, key=lambda idx: fetch_score(idx, mols, field, descending))
clusters_list.append(sorted_by_value)
else:
all_records = [x for x in clusters[i]]
clusters_list.append(all_records)
total_iter = 0
cluster_iter = 0
picked_count = 0
while total_iter < total and picked_count < count:
cluster_num = total_iter % num_clusters
clus = clusters_list[cluster_num]
pick = picked_list[cluster_num]
if len(clus) > 0:
# remove that item from the cluster so that it's not tried again
mol_index = clus.pop(0)
if len(pick) == 0: # first time for this cluster
pick.append(mol_index)
picked_count += 1
cluster_iter += 1
# utils.log("Cluster", cluster_num, "initialised with molecule", mol_index)
else:
closest_dist = get_closest_distance(distances, mol_index, pick)
if not score or closest_dist < score:
pick.append(mol_index)
picked_count += 1
cluster_iter += 1
# utils.log("Cluster", cluster_num, "added", mol_index, "with score", closestDist)
# else:
# utils.log("Cluster", cluster_num, "discarded", mol_index, "with score", closestDist)
else: # cluster has been exhausted
cluster_iter += 1
total_iter += 1
t1 = time.time()
DmLog.emit_event("Picked {} molecules using {} iterations in {:.1f}s".format(picked_count, total_iter, t1 - t0))
return picked_list
def get_distance(idx1, idx2, distances):
idx = 0
for i in range(1, idx1):
idx += i
idx += idx2
d = distances[idx]
return d
def get_closest_distance(distances, mol_idx, compare_to):
best = 0
for i in compare_to:
d = get_distance(mol_idx, i, distances)
if best < d:
best = d
return best
def execute(input, output, descriptor, metric, threshold, fragment_method, output_fragment, num, field, descending, exclude,
delimiter=None, id_column=None, mol_column=0, omit_fields=False,
read_header=False, write_header=False, read_records=50):
# create reader
calc_prop_names = [field_Cluster]
reader = rdkit_utils.create_reader(input, id_column=id_column, mol_column=mol_column, read_records=read_records,
read_header=read_header, delimiter=delimiter)
extra_field_names = reader.get_extra_field_names()
# create writer
utils.expand_path(output)
writer = rdkit_utils.create_writer(output,
extra_field_names=extra_field_names,
calc_prop_names=calc_prop_names,
delimiter=delimiter,
id_column=id_column, mol_column=mol_column)
id_col_type, id_col_value = utils.is_type(id_column, int)
# fragment and generate fingerprints
mols = [] # the RDKit molecules
data = [] # contains tuples of (id, smiles, props_dict) for each molecule
fps = [] # the fingerprints for each molecule
t0 = time.time()
num_errs = rdkit_utils.fragmentAndFingerprint(reader, mols, data, fps, descriptor,
fragmentMethod=fragment_method, outputFragment=output_fragment)
t1 = time.time()
DmLog.emit_event("Read and fingerprinted {} molecules in {:.1f}s".format(len(mols), t1 - t0))
if num_errs:
DmLog.emit_event("Encountered {} errors fingerprinting molecules".format(num_errs))
# do clustering
t0 = time.time()
clusters, dists, matrix = cluster_fps(fps, metric, 1.0 - threshold)
t1 = time.time()
DmLog.emit_event("Found {} clusters in {:.1f}s".format(len(clusters), t1 - t0))
# generate diverse subset if specified
# Note: max_min_picker.py is a much more scalable alternative
if num:
final_clusters = select_diverse_subset(mols, clusters, dists, num, field, descending, exclude)
else:
final_clusters = clusters
# write the results
lookup = clusters_to_map(final_clusters)
i = 0
result_count = 0
for mol in mols:
if result_count == 0 and write_header:
headers = rdkit_utils.generate_headers(
id_col_type,
id_col_value,
reader.get_mol_field_name(),
reader.field_names,
calc_prop_names,
omit_fields)
writer.write_header(headers)
if i in lookup:
cluster = lookup[i]
writer.write(data[i][1], mol, data[i][0], data[i][2], (cluster,))
result_count += 1
i += 1
DmLog.emit_event("Output {} molecules".format(result_count))
DmLog.emit_cost(result_count)
return len(clusters)
# start main execution ######################################################
def main():
# Examples:
# python -m cluster_butina -i data/100.smi -o clustered.smi --id-column 1 -d tab --write-header -t 0.3
# command line args definitions #########################################
parser = argparse.ArgumentParser(description='RDKit Butina Cluster')
parser.add_argument('-i', '--input', required=True, help="File with molecules to cluster (.sdf or .smi)")
parser.add_argument('-o', '--output', required=True, help="Output file (.sdf or .smi)")
parser.add_argument('-k', '--omit-fields', action='store_true',
help="Don't include fields from the input in the output")
# to pass tab as the delimiter specify it as $'\t' or use one of the symbolic names 'comma', 'tab', 'space' or 'pipe'
parser.add_argument('-d', '--delimiter', help="Delimiter when using SMILES")
parser.add_argument('--id-column', help="Column for name field (zero based integer for .smi, text for SDF)")
parser.add_argument('--mol-column', type=int, default=0,
help="Column index for molecule when using delineated text formats (zero based integer)")
parser.add_argument('--read-header', action='store_true',
help="Read a header line with the field names when reading .smi or .txt")
parser.add_argument('--write-header', action='store_true', help='Write a header line when writing .smi or .txt')
parser.add_argument('--read-records', default=100, type=int,
help="Read this many records to determine the fields that are present")
parser.add_argument('-t', '--threshold', type=float, default=0.7,
help='similarity clustering threshold (1.0 means identical)')
parser.add_argument('--descriptor', type=str.lower, choices=list(descriptors.keys()), default='rdkit',
help='descriptor or fingerprint type (default rdkit)')
parser.add_argument('-m', '--metric', type=str.lower, choices=list(metrics.keys()), default='tanimoto',
help='similarity metric (default tanimoto)')
parser.add_argument('-n', '--num', type=int, help='maximum number to pick for diverse subset selection')
parser.add_argument('-e', '--exclude', type=float,
help='threshold for excluding structures in diverse subset selection (1.0 means identical)')
parser.add_argument('--fragment-method', choices=['hac', 'mw'], default='hac',
help='How to find biggest fragment (hac: biggest by heavy atom count, mw: biggest by mol weight)')
parser.add_argument('--output-fragment', action='store_true',
help='Output the biggest fragment rather than the original molecule')
parser.add_argument('-f', '--field', help='field to use to optimise diverse subset selection')
parser.add_argument('-a', '--ascending', action='store_true', help='Pick lowest value specified by the --field option')
args = parser.parse_args()
DmLog.emit_event("Cluster Butina Args: ", args)
delimiter = utils.read_delimiter(args.delimiter)
descriptor = descriptors[args.descriptor]
metric = metrics[args.metric]
if args.field and not args.num:
raise ValueError('--num argument must be specified for diverse subset selection')
num_clusters = execute(args.input, args.output, descriptor, metric, args.threshold, args.fragment_method,
args.output_fragment, args.num, args.field, not args.ascending, args.exclude,
omit_fields=args.omit_fields, delimiter=delimiter, id_column=args.id_column, mol_column=args.mol_column,
read_header=args.read_header, write_header=args.write_header,
read_records=args.read_records)
if __name__ == "__main__":
main()