-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvae.py
64 lines (46 loc) · 1.97 KB
/
vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import tensorflow as tf
import pandas as pd
import numpy as np
def vaeсf_preprocessing(users: list, items: list, ratings: list):
"""
:param users: list of users
:param items: list of items
:param ratings: list of ratings
:return: sparse matrix
"""
data = pd.DataFrame({'user_id': users, 'item_id': items, 'ratings': ratings})
users_items_matrix_df = data.pivot(index='user_id',
columns='content_id',
values='view').fillna(0)
return users_items_matrix_df
# Autoencoder
def vaecf(users_number: int, items_number: int):
"""
:param users_number:
:param items_number:
:return:
"""
input_layer = tf.keras.layers.Input(shape=(items_number,), name='UserScore')
enc = tf.keras.layers.Dense(512, activation='selu', name='EncLayer1')(input_layer)
lat_space = tf.keras.layers.Dense(256, activation='selu', name='LatentSpace')(enc)
lat_space = tf.keras.layers.Dropout(0.8, name='Dropout')(lat_space)
dec = tf.keras.layers.Dense(512, activation='selu', name='DecLayer1')(lat_space)
output_layer = tf.keras.layers.Dense(items_number,
activation='linear',
name='UserScorePred')(dec)
# this model maps an input to its reconstruction
model = tf.keras.models.Model(input_layer, output_layer)
return model
def vae_preprocess_data(data):
"""
:param data: pd.DataFrame with columns ['user_id', 'item_id', 'rating']
:return:
"""
unique_users = list(set(data.user_id))
unique_items = list(set(data.item_id))
vae_sparse_matrix = np.zeros((len(unique_users), len(unique_items)))
for i in range(1, len(data.user_id)):
row_index = unique_users.index(list(data.user_id)[i])
col_index = unique_items.index(list(data.item_id)[i])
vae_sparse_matrix[row_index, col_index] = list(data.rating)[i]
return vae_sparse_matrix