-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsvd.py
executable file
·55 lines (39 loc) · 1.81 KB
/
svd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
"""
Singular Value Decomposition model
"""
import tensorflow as tf
def svd(users_number: int, items_number: int):
"""
:param users_number: int
:param items_number: int
:return: SVD model
"""
latent_dim, max_rating, min_rating = 10, 5, 1
# define placeholder.
user_id_input = tf.keras.layers.Input(shape=[1], name='user')
item_id_input = tf.keras.layers.Input(shape=[1], name='item')
# define embedding size and layers.
user_embedding = tf.keras.layers.Embedding(
output_dim=latent_dim,
input_dim=users_number + 1,
input_length=1,
name='user_embedding',
embeddings_regularizer=tf.keras.regularizers.l2())(user_id_input)
item_embedding = tf.keras.layers.Embedding(
output_dim=latent_dim,
input_dim=items_number + 1,
input_length=1,
name='item_embedding',
embeddings_regularizer=tf.keras.regularizers.l2())(item_id_input)
user_bias = tf.keras.layers.Embedding(input_dim=users_number + 1, output_dim=1)(user_id_input)
item_bias = tf.keras.layers.Embedding(input_dim=items_number + 1, output_dim=1)(item_id_input)
user_vecs = tf.keras.layers.Reshape([latent_dim])(user_embedding)
item_vecs = tf.keras.layers.Reshape([latent_dim])(item_embedding)
# The prediction, which we calculate the loss function with ground truth and optimize.
y_hat = tf.keras.layers.Dot(1, normalize=False)([user_vecs, item_vecs])
# add tf.keras.backend.constant(np.mean(targets), shape=[])
y_hat = tf.keras.layers.Add()([y_hat, user_bias, item_bias])
output = tf.keras.layers.Activation('relu')(y_hat)
output = tf.keras.layers.Lambda(lambda x: x * (max_rating - min_rating) + min_rating)(output)
model = tf.keras.models.Model(inputs=[user_id_input, item_id_input], outputs=output)
return model