-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathcreate_short_chat_set.py
208 lines (186 loc) · 6.75 KB
/
create_short_chat_set.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import json
import sys
import random
from datasets import load_dataset
from tqdm import tqdm
from src.data_processing.bad_substrings import has_bad_ss
def revert_flattening(records):
fixed_records = []
for key, values in records.items():
if not fixed_records:
fixed_records = [{} for _ in range(len(values))]
for i, value in enumerate(values):
fixed_records[i][key] = value
return fixed_records
def calc_max_length(records):
return max([sum([len(m["content"]) for m in r["messages"]]) for r in records])
def build_char_system_messages(char):
name = char["name"]
greeting = char["greeting"]
example_dialogue = char["example_dialogue"]
context = ""
if random.random() < 0.5:
context += f"Ты {name}. "
context += f"{char['context']}"
chat = []
if random.random() < 0.2:
context += f"\nПриветствие: {greeting}"
chat.append({
"role": "bot",
"content": greeting
})
if random.random() < 0.2:
mapping = {
"user": "Пользователь",
"char": "Персонаж"
}
example_messages = [f'{mapping[m["role"]]}: {m["content"]}' for m in example_dialogue]
context += "\nПример диалога:\n" + "\n".join(example_messages)
chat.insert(0, {
"role": "system",
"content": context
})
return chat
def main(train_path, val_path):
random.seed(42)
instruct_records = []
for row in tqdm(load_dataset("lksy/ru_instruct_gpt4", split="train")):
if random.random() > 0.3:
continue
message = row["instruction"]
if row["input"]:
message += "\nДано: " + row["input"]
output = row["full_output"]
if not output:
continue
if has_bad_ss([{"content": output}]):
continue
instruct_records.append({
"messages": [
{"role": "user", "content": message},
{"role": "bot", "content": output}
],
"source": "gpt4"
})
print("Instruct gpt4 count:", len(instruct_records))
print("Instruct gpt4 length:", calc_max_length(instruct_records))
records = instruct_records
saiga_records = []
for row in tqdm(load_dataset("IlyaGusev/ru_turbo_saiga", split="train")):
messages = revert_flattening(row["messages"])
if has_bad_ss(messages):
continue
if row["model_name"] != "gpt-4":
continue
if random.random() > 0.5:
continue
saiga_records.append({
"messages": messages,
"source": "saiga"
})
print("Saiga count:", len(saiga_records))
print("Max Saiga length:", calc_max_length(saiga_records))
records += saiga_records
sharegpt_records = []
for row in tqdm(load_dataset("IlyaGusev/ru_sharegpt_cleaned", split="train")):
messages = revert_flattening(row["messages"])
text_length = sum([len(m["content"]) for m in messages])
while text_length > 10000 and messages:
messages = messages[:-2]
text_length = sum([len(m["content"]) for m in messages])
if not messages:
continue
sharegpt_records.append({
"messages": messages,
"source": "sharegpt"
})
print("ShareGPT count:", len(sharegpt_records))
print("ShareGPT max length:", calc_max_length(sharegpt_records))
records += sharegpt_records
oasst_records = []
for row in tqdm(load_dataset("IlyaGusev/oasst1_ru_main_branch", split="train")):
messages = revert_flattening(row["messages"])
text_length = sum([len(m["content"]) for m in messages])
while text_length > 10000 and messages:
messages = messages[:-2]
text_length = sum([len(m["content"]) for m in messages])
if not messages:
continue
oasst_records.append({
"messages": messages,
"source": "oasst"
})
print("OASST count:", len(oasst_records))
print("OASST max length:", calc_max_length(oasst_records))
records += oasst_records
rp_records = []
for row in tqdm(load_dataset("IlyaGusev/gpt_roleplay_realm", split="ru")):
for dialogue in row["dialogues"]:
if dialogue["model_name"] != "gpt-4":
continue
chat = dialogue["chat"]
for message in chat:
if message["role"] == "char":
message["role"] = "bot"
if message["role"] == "operator":
message["role"] = "user"
system_messages = build_char_system_messages(row)
chat = system_messages + chat
rp_records.append({
"messages": chat,
"source": "roleplay"
})
print("Roleplay count:", len(rp_records))
print("Roleplay max length:", calc_max_length(rp_records))
records += rp_records
lima_records = []
lima_role_mapping = {
"human": "user",
"gpt": "bot"
}
for row in tqdm(load_dataset("64bits/lima_vicuna_format", split="train")):
chat = row["conversations"]
fixed_messages = [{
"role": "system",
"content": "You are a virtual assistant that wants to be helpful"
}]
for message in chat:
fixed_messages.append({
"role": lima_role_mapping[message["from"]],
"content": message["value"]
})
lima_records.append({
"messages": fixed_messages,
"source": "lima"
})
print("LIMA count:", len(lima_records))
print("LIMA max length:", calc_max_length(lima_records))
records += lima_records
print("All count:", len(records))
print("All max length:", calc_max_length(records))
cleaned_records = []
for record in records:
messages = record["messages"]
roles = {m["role"] for m in messages}
for role in roles:
assert role in ("bot", "user", "system"), role
if has_bad_ss(messages):
continue
if not record["messages"]:
continue
cleaned_records.append(record)
records = cleaned_records
print("All count after cleaning:", len(records))
random.shuffle(records)
border = int(0.95 * len(records))
train_records = records[:border]
val_records = records[border:]
with open(train_path, "w") as w:
for record in train_records:
w.write(json.dumps(record, ensure_ascii=False).strip() + "\n")
with open(val_path, "w") as w:
for record in val_records:
w.write(json.dumps(record, ensure_ascii=False).strip() + "\n")
train_path = sys.argv[1]
val_path = sys.argv[2]
main(train_path, val_path)