forked from wzx0826/LBNet
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathloss.py
86 lines (69 loc) · 2.6 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import os
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
class Loss(nn.modules.loss._Loss):
def __init__(self, args, ckp):
super(Loss, self).__init__()
self.loss = []
self.loss_module = nn.ModuleList()
for loss in args.loss.split('+'):
weight, loss_type = loss.split('*')
if loss_type == 'MSE':
loss_function = nn.MSELoss()
elif loss_type == 'L1':
loss_function = nn.L1Loss(reduction='mean')
else:
assert False, f"Unsupported loss type: {loss_type:s}"
self.loss.append({
'type': loss_type,
'weight': float(weight),
'function': loss_function}
)
if len(self.loss) > 1:
self.loss.append({'type': 'Total', 'weight': 0, 'function': None})
for l in self.loss:
if l['function'] is not None:
print('{:.3f} * {}'.format(l['weight'], l['type']))
self.loss_module.append(l['function'])
self.log = torch.Tensor()
def forward(self, sr, hr):
losses = []
for i, l in enumerate(self.loss):
if l['function'] is not None:
loss = l['function'](sr, hr)
effective_loss = l['weight'] * loss
losses.append(effective_loss)
self.log[-1, i] += effective_loss.item()
loss_sum = sum(losses)
if len(self.loss) > 1:
self.log[-1, -1] += loss_sum.item()
return loss_sum
def start_log(self):
self.log = torch.cat((self.log, torch.zeros(1, len(self.loss))))
def end_log(self, n_batches):
self.log[-1].div_(n_batches)
def display_loss(self, batch):
n_samples = batch + 1
log = []
for l, c in zip(self.loss, self.log[-1]):
log.append('[{}: {:.4f}]'.format(l['type'], c / n_samples))
return ''.join(log)
def plot_loss(self, apath, epoch):
axis = np.linspace(1, epoch, epoch)
for i, l in enumerate(self.loss):
label = '{} Loss'.format(l['type'])
fig = plt.figure()
plt.title(label)
plt.plot(axis, self.log[:, i].numpy(), label=label)
plt.legend()
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.grid(True)
plt.savefig('{}/loss_{}.pdf'.format(apath, l['type']))
plt.close(fig)
def save(self, apath):
torch.save(self.log, os.path.join(apath, 'loss_log.pt'))