-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathpackage.c
397 lines (352 loc) · 15.6 KB
/
package.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef _MSC_VER
#define strcasecmp _stricmp
#define strncasecmp _strnicmp
#else
#include <strings.h>
#endif
#include <math.h>
#include "package.h"
#include "temperature.h"
#include "flp.h"
#include "util.h"
/* default package configuration parameters */
package_config_t default_package_config(void)
{
package_config_t config;
/* 0: forced convection, 1: natural convection */
config.natural_convec = 0;
/* airflow type - 0: lateral airflow from sink side, 1: impinging airflow from sink top*/
config.flow_type = 0;
/* heatsink type - 0: fin-channel sink, 1: pin-fin sink */
config.sink_type = 0;
/* default sink specs */
/* sink base size is defined in thermal_config
* 1) fin-channel sink
*/
config.fin_height = 0.03;
config.fin_width = 0.001;
config.channel_width = 0.002;
/* 2) pin-fin sink */
config.pin_height = 0.02;
config.pin_diam = 0.002;
config.pin_dist = 0.005;
/* fan specs */
config.fan_radius = 0.03;
config.motor_radius = 0.01;
config.rpm = 1000;
return config;
}
/*
* parse a table of name-value string pairs and add the configuration
* parameters to package 'config'
*/
void package_config_add_from_strs(package_config_t *config, str_pair *table, int size)
{
int idx;
if ((idx = get_str_index(table, size, "natural_convec")) >= 0)
if(sscanf(table[idx].value, "%d", &config->natural_convec) != 1)
fatal("invalid format for heatsink configuration parameter natural_convec\n");
if ((idx = get_str_index(table, size, "flow_type")) >= 0)
if(sscanf(table[idx].value, "%d", &config->flow_type) != 1)
fatal("invalid format for heatsink configuration parameter flow_type\n");
if ((idx = get_str_index(table, size, "sink_type")) >= 0)
if(sscanf(table[idx].value, "%d", &config->sink_type) != 1)
fatal("invalid format for heatsink configuration parameter sink_type\n");
if ((idx = get_str_index(table, size, "fin_height")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->fin_height) != 1)
fatal("invalid format for heatsink configuration parameter fin_height\n");
if ((idx = get_str_index(table, size, "fin_width")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->fin_width) != 1)
fatal("invalid format for heatsink configuration parameter fin_width\n");
if ((idx = get_str_index(table, size, "channel_width")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->channel_width) != 1)
fatal("invalid format for heatsink configuration parameter channel_width\n");
if ((idx = get_str_index(table, size, "pin_height")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->pin_height) != 1)
fatal("invalid format for heatsink configuration parameter pin_height\n");
if ((idx = get_str_index(table, size, "pin_diam")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->pin_diam) != 1)
fatal("invalid format for heatsink configuration parameter pin_diam\n");
if ((idx = get_str_index(table, size, "pin_dist")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->pin_dist) != 1)
fatal("invalid format for heatsink configuration parameter pin_dist\n");
if ((idx = get_str_index(table, size, "fan_radius")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->fan_radius) != 1)
fatal("invalid format for fan configuration parameter fan_radius\n");
if ((idx = get_str_index(table, size, "motor_radius")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->motor_radius) != 1)
fatal("invalid format for fan configuration parameter motor_radius\n");
if ((idx = get_str_index(table, size, "rpm")) >= 0)
if(sscanf(table[idx].value, "%d", &config->rpm) != 1)
fatal("invalid format for configuration parameter rpm\n");
if ((config->fin_height <= 0) || (config->fin_width <= 0) || (config->channel_width <= 0) ||
(config->pin_height <= 0) || (config->pin_diam <= 0) || (config->pin_dist <= 0) ||
(config->fan_radius <= 0) || (config->motor_radius <= 0) || (config->rpm <= 0))
fatal("heatsink/fan dimensions and fan speed should be greater than zero\n");
if ((config->natural_convec != 0) && (config->natural_convec != 1))
fatal("invalid convection mode\n");
if ((config->flow_type != 0) && (config->flow_type != 1))
fatal("invalid air flow type\n");
if ((config->sink_type != 0) && (config->sink_type != 1))
fatal("invalid heatsink type\n");
}
/*
* convert config into a table of name-value pairs. returns the no.
* of parameters converted
*/
int package_config_to_strs(package_config_t *package_config, str_pair *package_table, int max_entries)
{
if (max_entries < 12)
fatal("not enough entries in table\n");
sprintf(package_table[0].name, "natural_convec");
sprintf(package_table[1].name, "flow_type");
sprintf(package_table[2].name, "sink_type");
sprintf(package_table[3].name, "fin_height");
sprintf(package_table[4].name, "fin_width");
sprintf(package_table[5].name, "channel_width");
sprintf(package_table[6].name, "pin_height");
sprintf(package_table[7].name, "pin_diam");
sprintf(package_table[8].name, "pin_dist");
sprintf(package_table[9].name, "fan_radius");
sprintf(package_table[10].name, "motor_radius");
sprintf(package_table[11].name, "rpm");
sprintf(package_table[0].value, "%d", package_config->natural_convec);
sprintf(package_table[1].value, "%d", package_config->flow_type);
sprintf(package_table[2].value, "%d", package_config->sink_type);
sprintf(package_table[3].value, "%lg", package_config->fin_height);
sprintf(package_table[4].value, "%lg", package_config->fin_width);
sprintf(package_table[5].value, "%lg", package_config->channel_width);
sprintf(package_table[6].value, "%lg", package_config->pin_height);
sprintf(package_table[7].value, "%lg", package_config->pin_diam);
sprintf(package_table[8].value, "%lg", package_config->pin_dist);
sprintf(package_table[9].value, "%lg", package_config->fan_radius);
sprintf(package_table[10].value, "%lg", package_config->motor_radius);
sprintf(package_table[11].value, "%d", package_config->rpm);
return 12;
}
/* calculate forced air flow and package thermal parameters
* references:
* 1-1 lateral flow, fin-channel heat sinks:
* -laminar flow: P. terrtstra et al. "Analytical Forced Convection Modeling of Plate-Fin Heat Sinks". IEEE SEMI-THERM, pp 34-41, 1999
* -turbulent flow: Y. A. Cengel. "Heat and Mass Transfer: A Practical Approach", Mcgraw-Hill Inc. New York 2007
* 1-2 lateral flow, pin-fin heat sinks:
* R. Ribando et al. "Estimating the Convection Coefficient for Flow Through Banks of Fins on a Heat Sink". U.Va. MAE314 Course Notes, Spring 2007
* 2-1 impinging flow for both fin-channel and pin-fin heat sinks:
* H. A. El-Sheikh et al. "Heat Transfer from Pin-Fin Heat Sinks under Multiple Impinging Jets", IEEE Trans. on Adv. Packaging, 23(1):113-120, Feb. 2000
* 3-1 fan model:
* F. P. Bleier. "Fan Handbook: Selection, Application and Design". McGraw-Hill Inc. New York, 1998
* 3-2 motor model of the fan:
* Y. Zhang et al. "SODA: Sensitivity-Based Optimization of Disk Architecture". IEEE/ACM DAC, pp. 865-870, 2007
*/
void calculate_flow(convection_t *p, package_config_t *config, thermal_config_t *thermal_config)
{
/* local variables */
double n_fin, n_pin;
double sur_area_fin, sur_area_pin;
double reynolds, nusselt, h_coeff, v, r_th;
double dh, a_fan, dr, r_approx, vol_v, rey_star, m, eta, f, c1, c2, a_hs;
double t1, t2; /* temporary variables for long formulas*/
double s_sink = thermal_config->s_sink;
double k_sink = thermal_config->k_sink;
int flow_type = config->flow_type;
int sink_type = config->sink_type;
double fin_height = config->fin_height;
double fin_width = config->fin_width;
double channel_width = config->channel_width;
double pin_height = config->pin_height;
double pin_diam = config->pin_diam;
double pin_dist = config->pin_dist;
double fan_radius = config->fan_radius;
double motor_radius = config->motor_radius;
double rpm = config->rpm;
double temp_val = (s_sink-pin_diam)/(pin_diam+pin_dist);
n_fin = ceil((s_sink-fin_width)/(fin_width+channel_width)-0.5);
sur_area_fin = s_sink*(s_sink+2.0*n_fin*fin_height);
n_pin = ceil(temp_val*temp_val-0.5);
sur_area_pin = s_sink*s_sink+PI*pin_diam*pin_height*n_pin;
/* calculate volumetric air speed out of the fan */
dr = sqrt(fan_radius * fan_radius - motor_radius * motor_radius);
r_approx = motor_radius + dr; /* approximated average fan radius */
a_fan = PI * dr * dr; /* total fan blade area */
/* refer to DAC'07 SODA paper by Zhang, Gurumurthi and Stan
* crudely approximating an IC fan motor with a hard drive spindle motor model
* the principle is that the dragging momentum on the blades from the air equals to the torque of the motor at steady state
* so, torque=b*(omega^alpha)=drag_force*radius (1)
* where b=0.5*pi*air_density*C_d*(radius^beta)
* drag coeff C_d=drag_force/(0.5*air_density*air_velocity^2*total_blade_area)
* manipulate both side of (1), derive volmetric velocity from the fan as...
*/
vol_v = a_fan * sqrt(0.25 * PI * pow(r_approx,FAN_BETA-1) * pow(rpm * RPM_TO_RAD,FAN_ALPHA) / a_fan);
/* calculate the actual air velocity through heatsink: vol_velocity/area_duct_sink */
if (flow_type==0) { /* lateral airflow */
dh = 2.0*channel_width*s_sink/(channel_width+s_sink); /* hydraulic diameter */
if (sink_type==0) { /* fin-channel sink */
v = vol_v / ((n_fin-1)*channel_width*fin_height);
}
else { /* pin-fin sink */
v = vol_v / ((sqrt(n_pin)-1)*pin_dist*pin_height);
}
}
else { /* impinging flow */
dh = 2.0 * s_sink / sqrt(PI); /* equivalent air nozzle diameter */
v = vol_v / (s_sink*s_sink-n_pin*PI*(pin_diam*0.5)*(pin_diam*0.5));
}
/* Reynolds number */
reynolds = AIR_DSTY * v * dh / AIR_DYNVISC;
/* calculate nusselt number, heat transfer coeff
* and equivalent overall lumped convection resistance
*/
if (flow_type==0) { /* lateral airflow */
if (sink_type==0) { /* fin-channel sink */
if (reynolds <= REY_THRESHOLD) { /* laminar flow */
rey_star = AIR_DSTY*v*channel_width*channel_width/(AIR_DYNVISC*s_sink);
t1 = pow(rey_star*PRANTDL_NUM*0.5,-3);
t2 = pow(0.664*sqrt(rey_star)*pow(PRANTDL_NUM,0.33)*sqrt(1+3.65/sqrt(rey_star)),-3);
nusselt = pow(t1+t2,-0.33); /* nusselt number */
h_coeff = nusselt*AIR_COND/channel_width; /* heat transfer coefficient */
m = sqrt(2*h_coeff/(k_sink*fin_width)); /* fin parameter */
eta = tanh(m*s_sink)/(m*s_sink); /* fin efficiency */
r_th = 1.0/(h_coeff*(channel_width+2*eta*s_sink)*n_fin*s_sink);
}
else { /* turbulent flow */
f = 1.0/pow((0.79*log(reynolds)-1.64),2.0);
nusselt = 0.125*f*reynolds*pow(PRANTDL_NUM,0.33);
h_coeff = nusselt*AIR_COND/dh;
m = sqrt(2*h_coeff/(k_sink*fin_width)); /* fin parameter */
eta = tanh(m*s_sink)/(m*s_sink); /* fin efficiency */
r_th = 1.0/(h_coeff*(channel_width+2*eta*s_sink)*n_fin*s_sink);
}
}
else { /* pin-fin sink */
c1 = 0.6;
c2 = 0.8+0.8333*sqrt(sqrt(n_pin)-1)/pow((1+0.03*pow((sqrt(n_pin)-1),2.0)),0.25);
nusselt = 0.4+0.9*(1.25*c2*c1*sqrt(reynolds)+0.001*reynolds)*pow(PRANTDL_NUM,0.33);
h_coeff = nusselt*AIR_COND/pin_diam;
r_th = 1.0/(h_coeff*sur_area_pin);
}
}
else { /* impinging flow */
if (sink_type==0) { /* fin-channel sink */
a_hs = sur_area_fin;
}
else { /* pin-fin sink */
a_hs = sur_area_pin;
}
dh = 2.0 * s_sink / sqrt(PI);
nusselt = 1.92*pow(reynolds,0.716)*pow(PRANTDL_NUM,0.4)*pow(a_hs/(s_sink*s_sink),-0.698);
h_coeff = nusselt*AIR_COND/dh;
r_th = 1.0/(h_coeff*a_hs);
}
p->n_fin = n_fin;
p->sur_area_fin = sur_area_fin;
p->n_pin = n_pin;
p->sur_area_pin = sur_area_pin;
p->reynolds = reynolds;
p->nusselt = nusselt;
p->h_coeff = h_coeff;
p->v = v;
p->r_th = r_th;
}
/* calculate convection parameters for natural convection.
* reference: Y. A. Cengel. "Heat and Mass Transfer: A Practical Approach", Mcgraw-Hill Inc. New York 2007
*/
void calc_natural_convec(convection_t *p, package_config_t *config, thermal_config_t *thermal_config, double sink_temp)
{
/* local variables */
double rayleigh;
double n_fin, n_pin;
double w;
double sur_area, sur_area_fin, sur_area_pin;
double nusselt, h_coeff, r_th, r_th_rad;
double s_sink = thermal_config->s_sink;
double ambient = thermal_config->ambient;
int sink_type = config->sink_type;
double fin_height = config->fin_height;
double fin_width = config->fin_width;
double channel_width = config->channel_width;
double pin_height = config->pin_height;
double pin_diam = config->pin_diam;
double pin_dist = config->pin_dist;
double temp_val = (s_sink-pin_diam)/(pin_diam+pin_dist);
n_fin = ceil((s_sink-fin_width)/(fin_width+channel_width)-0.5);
sur_area_fin = s_sink*(s_sink+2.0*n_fin*fin_height);
n_pin = ceil(temp_val*temp_val-0.5);
sur_area_pin = s_sink*s_sink+PI*pin_diam*pin_height*n_pin;
if (sink_type==0) { /* fin-channel sink */
sur_area = sur_area_fin;
w = channel_width;
} else { /* pin-fin heatsink */
sur_area = sur_area_pin;
w = pin_dist;
}
/* CAUTION: equations are derived for fin-channel heatsink, not validated for pin-fin heatsink */
rayleigh = GRAVITY*VOL_EXP_COEFF*(sink_temp-ambient)*pow(w,3.0)*PRANTDL_NUM/(AIR_KINVISC*AIR_KINVISC);
nusselt = pow((576/((rayleigh*w/s_sink)*(rayleigh*w/s_sink))+2.873/sqrt(rayleigh*w/s_sink)),-0.5);
h_coeff = nusselt*AIR_COND/w;
r_th = 1.0/(h_coeff*sur_area);
/* thermal radiation*/
r_th_rad = (sink_temp-ambient)/(EMISSIVITY*STEFAN*(pow(sink_temp,4.0)-pow(ambient,4.0))*sur_area);
/* overall thermal resistance = natural convection in parallel with thermal radiation */
r_th = r_th*r_th_rad/(r_th+r_th_rad);
p->n_fin = n_fin;
p->sur_area_fin = sur_area_fin;
p->n_pin = n_pin;
p->sur_area_pin = sur_area_pin;
p->nusselt = nusselt;
p->h_coeff = h_coeff;
p->r_th = r_th;
}
/* debug print */
void debug_print_convection(convection_t *p)
{
fprintf(stdout, "printing airflow information...\n");
fprintf(stdout, "n_fin: %f\n", p->n_fin);
fprintf(stdout, "sur_area_fin: %f\n", p->sur_area_fin);
fprintf(stdout, "n_pin: %f\n", p->n_pin);
fprintf(stdout, "sur_area_pin: %f\n", p->sur_area_pin);
fprintf(stdout, "reynolds: %f\n", p->reynolds);
fprintf(stdout, "nusselt: %f\n", p->nusselt);
fprintf(stdout, "h_coeff: %f\n", p->h_coeff);
fprintf(stdout, "v: %f\n", p->v);
fprintf(stdout, "r_th: %f\n", p->r_th);
}
/* initialize and calculate package parameters and update r_convec */
int package_model(thermal_config_t *thermal_config, str_pair *table, int size, double sink_temp)
{
int idx;
int natural_convec;
str_pair package_table[MAX_ENTRIES];
int package_size;
/* package config parameters */
package_config_t package_config;
convection_t p;
package_size = 0;
/* get defaults */
package_config = default_package_config();
/* parse the package config file name */
if ((idx = get_str_index(table, size, "package_config_file")) >= 0) {
if(sscanf(table[idx].value, "%s", thermal_config->package_config_file) != 1)
fatal("invalid format for configuration parameter package_config_file\n");
}
/* read package config file */
if (strcmp(thermal_config->package_config_file, NULLFILE))
package_size += read_str_pairs(&package_table[package_size], MAX_ENTRIES, thermal_config->package_config_file);
/* modify according to package config file */
package_config_add_from_strs(&package_config, package_table, package_size);
natural_convec = package_config.natural_convec;
/* calculate flow parameters into p */
if (!natural_convec) /* forced convection */
calculate_flow(&p, &package_config, thermal_config);
else /* natural convection */
calc_natural_convec(&p, &package_config, thermal_config, sink_temp);
/* print flow parameters for debug */
#if VERBOSE > 1
debug_print_convection(&p);
#endif
/* assign new r_convec calculated from the package model */
thermal_config->r_convec = p.r_th;
return natural_convec;
}