-
-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathspyre_embedding_model_runner.py
194 lines (158 loc) · 7.03 KB
/
spyre_embedding_model_runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import time
from typing import Dict, Iterable, List, Optional, Tuple
import torch
from transformers import AutoModel
import vllm.envs as envs
from vllm.config import (DeviceConfig, ModelConfig, ParallelConfig,
SchedulerConfig)
from vllm.logger import init_logger
from vllm.model_executor.layers.pooler import Pooler, PoolingType
from vllm.model_executor.pooling_metadata import PoolingMetadata
from vllm.pooling_params import PoolingParams
from vllm.sequence import (IntermediateTensors, PoolerOutput, SequenceData,
SequenceGroupMetadata)
from .spyre_model_runner import ModelInputForSpyre, SpyreModelRunner
logger = init_logger(__name__)
BACKEND_LIST = ['sendnn', 'inductor']
class SpyreEmbeddingModelRunner(SpyreModelRunner):
# Map of request_id -> generator used for seeded random sampling
generators: Dict[str, torch.Generator] = {}
def __init__(
self,
model_config: ModelConfig,
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig,
device_config: DeviceConfig,
is_driver_worker: bool,
):
super().__init__(model_config=model_config,
parallel_config=parallel_config,
scheduler_config=scheduler_config,
device_config=device_config,
is_driver_worker=is_driver_worker)
pooler_config = model_config.pooler_config
self.pooler = Pooler.from_config_with_defaults(
pooler_config,
pooling_type=PoolingType.CLS,
normalize=True,
softmax=False)
def load_model(self, prompt_lens: Iterable[int],
num_decode_tokens: Iterable[int],
batch_sizes: Iterable[int]) -> None:
self.model = AutoModel.from_pretrained(self.model_config.model)
self.model.eval()
torch.set_grad_enabled(False)
if envs.VLLM_SPYRE_DYNAMO_BACKEND in BACKEND_LIST:
self.model = torch.compile(self.model,
mode="default",
dynamic=False,
backend=envs.VLLM_SPYRE_DYNAMO_BACKEND)
@property
def vocab_size(self) -> int:
return self.model.config.vocab_size
def prepare_input_tensors(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
finished_requests_ids: Optional[List[str]] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, PoolingMetadata]:
# NOTE: We assume that all sequences in the group are all prompts
(input_tokens, input_positions, input_masks,
seq_lens) = self._prepare_prompt(seq_group_metadata_list)
pooling_metadata = self._prepare_pooling(
seq_group_metadata_list=seq_group_metadata_list,
prompt_lens=seq_lens)
return (input_tokens, input_positions, input_masks, pooling_metadata)
def _prepare_pooling(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
prompt_lens: List[int],
) -> PoolingMetadata:
"""Prepare PoolingMetadata for the sequence group metadata list."""
seq_groups: List[Tuple[List[int], PoolingParams]] = []
for i, seq_group_metadata in enumerate(seq_group_metadata_list):
seq_ids = list(seq_group_metadata.seq_data.keys())
pooling_params = seq_group_metadata.pooling_params
seq_groups.append((seq_ids, pooling_params))
seq_data: Dict[int, SequenceData] = {}
for seq_group_metadata in seq_group_metadata_list:
seq_data.update(seq_group_metadata.seq_data)
pooling_metadata = PoolingMetadata(
seq_groups=seq_groups,
seq_data=seq_data,
prompt_lens=prompt_lens,
)
return pooling_metadata
def pad_input_ids(
self,
input_ids_list: List[torch.Tensor],
min_pad_length: int = 0,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
padded_input_ids_list, mask_list, position_ids_list = self.\
_prepare_pad_input_ids(input_ids_list, min_pad_length)
input_ids = torch.stack(padded_input_ids_list)
mask = torch.stack(mask_list)
position_ids = torch.stack(position_ids_list)
return input_ids, position_ids, mask
def prepare_model_input(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
virtual_engine: int = 0,
finished_requests_ids: Optional[List[str]] = None
) -> ModelInputForSpyre:
(input_tokens, input_positions, input_masks,
pooling_metadata) = self.prepare_input_tensors(
seq_group_metadata_list, finished_requests_ids)
return ModelInputForSpyre(input_tokens=input_tokens,
input_positions=input_positions,
input_masks=input_masks,
pooling_metadata=pooling_metadata)
def execute_model(
self,
model_input: ModelInputForSpyre,
kv_caches: Optional[List[torch.Tensor]] = None,
intermediate_tensors: Optional[IntermediateTensors] = None,
num_steps: int = 1,
**kwargs,
) -> Optional[List[PoolerOutput]]:
t0 = time.time()
outputs = self.model(
input_ids=model_input.input_tokens,
# Let the Embedding layer use it's default
# because the rules can be a bit different
# e.g. For Roberta models the inputs start
# at padding_inx +1
#position_ids=input_positions,
attention_mask=model_input.input_masks)
hidden_states = outputs["last_hidden_state"]
unpadded = []
max_len = hidden_states.shape[1]
if model_input.pooling_metadata is not None:
for i, seq_len in enumerate(
model_input.pooling_metadata.prompt_lens):
unpadded.append(hidden_states[i, max_len - seq_len:, :])
hidden_states = torch.concat(unpadded)
pooler_output = self.pooler(
hidden_states=hidden_states,
pooling_metadata=model_input.pooling_metadata)
t1 = time.time() - t0
print("[spyre_model_runner:execute_model] t_token: %.2fms" %
(t1 * 1000))
return [pooler_output]
def _raw_model_forward(
self,
input_ids: torch.Tensor,
mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_value_states: Optional[List[Tuple[torch.Tensor,
torch.Tensor]]] = None,
use_cache: bool = False,
only_last_token: bool = False,
attn_algorithm: Optional[str] = None
) -> Tuple[torch.Tensor, Optional[List[Tuple[torch.Tensor,
torch.Tensor]]]]:
hidden_states, _ = self.model(
input_ids=input_ids,
attention_mask=mask,
#position_ids=position_ids
)
return hidden_states, None