-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathARAE_utils.py
392 lines (309 loc) · 13.4 KB
/
ARAE_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
import json
import os
import numpy as np
def to_gpu(gpu, var):
if gpu:
return var.cuda()
return var
class MLP_D(nn.Module):
def __init__(self, ninput, noutput, layers,
activation=nn.LeakyReLU(0.2), gpu=True):
super(MLP_D, self).__init__()
self.ninput = ninput
self.noutput = noutput
layer_sizes = [ninput] + [int(x) for x in layers.split('-')]
self.layers = []
for i in range(len(layer_sizes)-1):
layer = nn.Linear(layer_sizes[i], layer_sizes[i+1])
self.layers.append(layer)
self.add_module("layer"+str(i+1), layer)
# No batch normalization after first layer
if i != 0:
bn = nn.BatchNorm1d(layer_sizes[i+1], eps=1e-05, momentum=0.1)
self.layers.append(bn)
self.add_module("bn"+str(i+1), bn)
self.layers.append(activation)
self.add_module("activation"+str(i+1), activation)
layer = nn.Linear(layer_sizes[-1], noutput)
self.layers.append(layer)
self.add_module("layer"+str(len(self.layers)), layer)
self.init_weights()
def forward(self, x, get_mean=True):
for i, layer in enumerate(self.layers):
x = layer(x)
if get_mean:
x = torch.mean(x)
return x
def init_weights(self):
init_std = 0.02
for layer in self.layers:
try:
layer.weight.data.normal_(0, init_std)
layer.bias.data.fill_(0)
except:
pass
class MLP_G(nn.Module):
def __init__(self, ninput, noutput, layers,
activation=nn.ReLU(), gpu=True):
super(MLP_G, self).__init__()
self.ninput = ninput
self.noutput = noutput
layer_sizes = [ninput] + [int(x) for x in layers.split('-')]
self.layers = []
for i in range(len(layer_sizes)-1):
layer = nn.Linear(layer_sizes[i], layer_sizes[i+1])
self.layers.append(layer)
self.add_module("layer"+str(i+1), layer)
bn = nn.BatchNorm1d(layer_sizes[i+1], eps=1e-05, momentum=0.1)
self.layers.append(bn)
self.add_module("bn"+str(i+1), bn)
self.layers.append(activation)
self.add_module("activation"+str(i+1), activation)
layer = nn.Linear(layer_sizes[-1], noutput)
self.layers.append(layer)
self.add_module("layer"+str(len(self.layers)), layer)
self.init_weights()
def forward(self, x):
for i, layer in enumerate(self.layers):
x = layer(x)
return x
def init_weights(self):
init_std = 0.02
for layer in self.layers:
try:
layer.weight.data.normal_(0, init_std)
layer.bias.data.fill_(0)
except:
pass
class Seq2Seq(nn.Module):
def __init__(self, emsize, nhidden, ntokens, nlayers, noise_r=0.2,
hidden_init=False, dropout=0, gpu=True):
super(Seq2Seq, self).__init__()
self.nhidden = nhidden
self.emsize = emsize
self.ntokens = ntokens
self.nlayers = nlayers
self.noise_r = noise_r
self.hidden_init = hidden_init
self.dropout = dropout
self.gpu = gpu
self.start_symbols = to_gpu(gpu, Variable(torch.ones(10, 1).long()))
# Vocabulary embedding
self.embedding = nn.Embedding(ntokens, emsize)
self.embedding_decoder = nn.Embedding(ntokens, emsize)
# RNN Encoder and Decoder
self.encoder = nn.LSTM(input_size=emsize,
hidden_size=nhidden,
num_layers=nlayers,
dropout=dropout,
batch_first=True)
decoder_input_size = emsize+nhidden
self.decoder = nn.LSTM(input_size=decoder_input_size,
hidden_size=nhidden,
num_layers=1,
dropout=dropout,
batch_first=True)
# Initialize Linear Transformation
self.linear = nn.Linear(nhidden, ntokens)
self.init_weights()
def init_weights(self):
initrange = 0.1
# Initialize Vocabulary Matrix Weight
self.embedding.weight.data.uniform_(-initrange, initrange)
self.embedding_decoder.weight.data.uniform_(-initrange, initrange)
# Initialize Encoder and Decoder Weights
for p in self.encoder.parameters():
p.data.uniform_(-initrange, initrange)
for p in self.decoder.parameters():
p.data.uniform_(-initrange, initrange)
# Initialize Linear Weight
self.linear.weight.data.uniform_(-initrange, initrange)
self.linear.bias.data.fill_(0)
def init_hidden(self, bsz):
zeros1 = Variable(torch.zeros(1, bsz, self.nhidden))
zeros2 = Variable(torch.zeros(1, bsz, self.nhidden))
return (to_gpu(self.gpu, zeros1), to_gpu(self.gpu, zeros2))
def init_state(self, bsz):
zeros = Variable(torch.zeros(1, bsz, self.nhidden))
return to_gpu(self.gpu, zeros)
def store_grad_norm(self, grad):
norm = torch.norm(grad, 2, 1)
self.grad_norm = norm.detach().data.mean()
return grad
def forward(self, indices, lengths, noise, encode_only=False):
batch_size, maxlen = indices.size()
hidden = self.encode(indices, lengths, noise)
if encode_only:
return hidden
if hidden.requires_grad:
hidden.register_hook(self.store_grad_norm)
decoded = self.decode(hidden, batch_size, maxlen,
indices=indices, lengths=lengths)
return decoded
def encode(self, indices, lengths, noise):
embeddings = self.embedding(indices)
packed_embeddings = pack_padded_sequence(input=embeddings,
lengths=lengths,
batch_first=True)
packed_output, state = self.encoder(packed_embeddings)
hidden = state[0][-1]
hidden = hidden / torch.norm(hidden, p=2, dim=1, keepdim=True)
if noise and self.noise_r > 0:
gauss_noise = torch.normal(mean=torch.zeros(hidden.size()),
std=self.noise_r)
hidden = hidden + Variable(gauss_noise.cuda())
return hidden
def decode(self, hidden, batch_size, maxlen, indices=None, lengths=None):
# batch x hidden
all_hidden = hidden.unsqueeze(1).repeat(1, maxlen, 1)
if self.hidden_init:
# initialize decoder hidden state to encoder output
state = (hidden.unsqueeze(0), self.init_state(batch_size))
else:
state = self.init_hidden(batch_size)
embeddings = self.embedding_decoder(indices)
augmented_embeddings = torch.cat([embeddings, all_hidden], 2)
packed_embeddings = pack_padded_sequence(input=augmented_embeddings,
lengths=lengths,
batch_first=True)
packed_output, state = self.decoder(packed_embeddings, state)
output, lengths = pad_packed_sequence(packed_output, batch_first=True)
# reshape to batch_size*maxlen x nhidden before linear over vocab
decoded = self.linear(output.contiguous().view(-1, self.nhidden))
decoded = decoded.view(batch_size, maxlen, self.ntokens)
return decoded
def generate(self, hidden, maxlen, sample=True, temp=1.0):
"""Generate through decoder; no backprop"""
batch_size = hidden.size(0)
if self.hidden_init:
# initialize decoder hidden state to encoder output
state = (hidden.unsqueeze(0), self.init_state(batch_size))
else:
state = self.init_hidden(batch_size)
# <sos>
with torch.no_grad():
self.start_symbols.resize_(batch_size, 1)
self.start_symbols.fill_(1)
#self.start_symbols.data.resize_(batch_size, 1)
#self.start_symbols.data.fill_(1)
embedding = self.embedding_decoder(self.start_symbols)
inputs = torch.cat([embedding, hidden.unsqueeze(1)], 2)
# unroll
all_indices = []
for i in range(maxlen):
output, state = self.decoder(inputs, state)
overvocab = self.linear(output.squeeze(1))
if not sample:
vals, indices = torch.max(overvocab, 1)
else:
probs = F.softmax(overvocab / temp, dim=-1)
indices = torch.multinomial(probs, 1)
indices = indices.unsqueeze(1)
all_indices.append(indices)
embedding = self.embedding_decoder(indices)
inputs = torch.cat([embedding, hidden.unsqueeze(1)], 2)
max_indices = torch.cat(all_indices, 1)
return max_indices
def generate_decoding(self, hidden, maxlen, sample=True, temp=1.0, mask=None, avoid_l=0, start_idx=0, end_check=False):
"""Generate through decoder; no backprop"""
batch_size = hidden.size(0)
avoid_l = min(avoid_l, maxlen-start_idx)
if self.hidden_init:
# initialize decoder hidden state to encoder output
state = (hidden.unsqueeze(0), self.init_state(batch_size))
else:
state = self.init_hidden(batch_size)
# <sos>
with torch.no_grad():
self.start_symbols.resize_(batch_size, 1)
self.start_symbols.fill_(1)
#self.start_symbols.data.resize_(batch_size, 1)
#self.start_symbols.data.fill_(1)
embedding = self.embedding_decoder(self.start_symbols)
inputs = torch.cat([embedding, hidden.unsqueeze(1)], 2)
# unroll
all_indices = []
all_vocab_prob = []
for i in range(maxlen):
output, state = self.decoder(inputs, state)
overvocab = self.linear(output.squeeze(1))
if end_check and i == maxlen-1:
logit = F.log_softmax(overvocab, dim=-1)
end_loss = -torch.mean(logit[:, 64]) * 0.5
# mask out the sentiment words that is not good.
if i >= start_idx:
if mask is not None:
overvocab = overvocab + mask
if avoid_l > 0:
num_last = len(all_indices)
# make previous word to have prob 0
for r_i in range(1, avoid_l+1):
if r_i <= num_last:
ind_last = all_indices[-r_i]
overvocab.scatter_(1, ind_last, -float("Inf"))
# if the previous symbol is <eos> the current symbol should always be eos
# if i > start_idx:
# # use the previous result(eos is larget to replace current prob)
# overvocab = torch.where(all_indices[-1] == 2, all_vocab_prob[-1], overvocab)
all_vocab_prob.append(overvocab)
if not sample:
vals, indices = torch.max(overvocab, 1)
indices = indices.unsqueeze(1)
else:
probs = F.softmax(overvocab / temp, dim=-1)
indices = torch.multinomial(probs, 1)
if i >= start_idx:
all_indices.append(indices)
embedding = self.embedding_decoder(indices)
inputs = torch.cat([embedding, hidden.unsqueeze(1)], 2)
max_indices = torch.cat(all_indices, 1)
#all_vocab_prob = torch.cat(all_vocab_prob, 1)
if not end_check:
return max_indices, all_vocab_prob
else:
output, state = self.decoder(inputs, state)
overvocab = self.linear(output.squeeze(1))
logit = F.log_softmax(overvocab, dim=-1)
end_loss = end_loss - torch.mean(logit[:, 2]) * 0.5
return max_indices, all_vocab_prob, end_loss
def noise_anneal(self, fac):
self.noise_r *= fac
def generate(autoencoder, gan_gen, z, vocab, sample, maxlen):
"""
Assume noise is batch_size x z_size
"""
if type(z) == Variable:
noise = z
elif type(z) == torch.FloatTensor or type(z) == torch.cuda.FloatTensor or type(z) == torch.Tensor or type(z) == torch.cuda.Tensor:
noise = Variable(z, volatile=True)
elif type(z) == np.ndarray:
noise = Variable(torch.from_numpy(z).float(), volatile=True)
else:
raise ValueError("Unsupported input type (noise): {}".format(type(z)))
gan_gen.eval()
autoencoder.eval()
# generate from random noise
fake_hidden = gan_gen(noise)
max_indices = autoencoder.generate(hidden=fake_hidden,
maxlen=maxlen,
sample=sample)
max_indices = max_indices.data.cpu().numpy()
sentences = []
for idx in max_indices:
# generated sentence
words = [vocab[x] for x in idx]
# truncate sentences to first occurrence of <eos>
truncated_sent = []
for w in words:
if w != '<eos>':
truncated_sent.append(w)
else:
break
sent = " ".join(truncated_sent)
sentences.append(sent)
return sentences