forked from iwtw/pytorch-TP-GAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMobileNetV2.py
executable file
·120 lines (102 loc) · 3.94 KB
/
MobileNetV2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
#borrowed from https://github.com/tonylins/pytorch-mobilenet-v2
import torch.nn as nn
import math
import copy
def conv_bn(inp, oup, stride):
return nn.Sequential(
nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
nn.BatchNorm2d(oup),
nn.ReLU6(inplace=True)
)
def conv_1x1_bn(inp, oup):
return nn.Sequential(
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
nn.ReLU6(inplace=True)
)
class InvertedResidual(nn.Module):
def __init__(self, inp, oup, stride, expand_ratio):
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2]
self.use_res_connect = self.stride == 1 and inp == oup
self.conv = nn.Sequential(
# pw
nn.Conv2d(inp, inp * expand_ratio, 1, 1, 0, bias=False),
nn.BatchNorm2d(inp * expand_ratio),
nn.ReLU6(inplace=True),
# dw
nn.Conv2d(inp * expand_ratio, inp * expand_ratio, 3, stride, 1, groups=inp * expand_ratio, bias=False),
nn.BatchNorm2d(inp * expand_ratio),
nn.ReLU6(inplace=True),
# pw-linear
nn.Conv2d(inp * expand_ratio, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
class MobileNetV2(nn.Module):
def __init__(self, num_classes=1000, input_size=224, fm_mult=1. , dropout = 0.5):
super(MobileNetV2, self).__init__()
# setting of inverted residual blocks
self.interverted_residual_setting = [
# t, c, n, s
[1, 16, 1, 1],
[6, 24, 2, 2],
[6, 32, 3, 2],
[6, 64, 4, 2],
[6, 96, 3, 1],
[6, 160, 3, 2],
[6, 320, 1, 1],
]
# building first layer
assert input_size % 16 == 0
input_channel = int(32 * fm_mult)
self.last_channel = int(1280 * fm_mult) if fm_mult > 1.0 else 1280
#self.features = [conv_bn(3, input_channel, 2)]
self.features = [conv_bn(3,input_channel,round(input_size/224*2))]
# building inverted residual blocks
for t, c, n, s in self.interverted_residual_setting:
output_channel = int(c * fm_mult)
for i in range(n):
if i == 0:
self.features.append(InvertedResidual(input_channel, output_channel, s, t))
else:
self.features.append(InvertedResidual(input_channel, output_channel, 1, t))
input_channel = output_channel
# building last several layers
self.features.append(conv_1x1_bn(input_channel, self.last_channel))
self.features.append(nn.AvgPool2d(input_size//16))
# make it nn.Sequential
self.features = nn.Sequential(*self.features)
# building classifier
self.dropout = nn.Dropout(dropout)
self.classifier = nn.Sequential(
nn.Linear(self.last_channel, num_classes),
)
self._initialize_weights()
def forward(self, x , use_dropout=False):
x = self.features(x)
x = x.view(-1, self.last_channel)
features = x
if use_dropout:
x = self.dropout(x)
x = self.classifier(x)
return x , features
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
n = m.weight.size(1)
m.weight.data.normal_(0, 0.01)
m.bias.data.zero_()