-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest.py
230 lines (181 loc) · 8.25 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
from __future__ import print_function
import argparse
import os
import torch
import cv2
from model import *
import torchvision.transforms as transforms
from collections import OrderedDict
import numpy as np
from os.path import join
import time
from network import encoder4, decoder4
import numpy
from dataset import is_image_file
from image_utils import *
from PIL import Image, ImageOps
from os import listdir
import torch.utils.data as utils
import os
# Training settings
parser = argparse.ArgumentParser(description='PyTorch Super Res Example')
parser.add_argument('--testBatchSize', type=int, default=8, help='testing batch size')
parser.add_argument('--up_factor', type=int, default=4, help="super resolution upscale factor")
parser.add_argument('--gpu_mode', type=bool, default=True)
parser.add_argument('--chop_forward', type=bool, default=True)
parser.add_argument('--patch_size', type=int, default=64, help='0 to use original frame size')
parser.add_argument('--stride', type=int, default=4, help='0 to use original patch size')
parser.add_argument('--threads', type=int, default=6, help='number of threads for data loader to use')
parser.add_argument('--seed', type=int, default=123, help='random seed to use. Default=123')
parser.add_argument('--gpus', default=1, type=int, help='number of gpu')
parser.add_argument('--image_dataset', type=str, default='data/SR/Set5/')
parser.add_argument('--model_type', type=str, default='VAE')
parser.add_argument('--distortion', type=int, default=1)
parser.add_argument('--model', default='GAN_generator_50.pth', help='sr pretrained base model')
parser.add_argument("--encoder_dir", default='models/vgg_r41.pth', help='pre-trained encoder path')
parser.add_argument("--decoder_dir", default='models/dec_r41.pth', help='pre-trained encoder path')
opt = parser.parse_args()
print(opt)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print('===> Building model ', opt.model_type)
# def apply_dropout(m):
# if type(m) == nn.Dropout:
# m.train()
model = VAE_v3_4x(up_factor=opt.up_factor)
enc = encoder4()
dec = decoder4()
if os.path.exists(opt.encoder_dir):
enc.load_state_dict(torch.load(opt.encoder_dir))
print('encoder model is loaded!')
if os.path.exists(opt.decoder_dir):
dec.load_state_dict(torch.load(opt.decoder_dir))
print('decoder model is loaded!')
for param in enc.parameters():
param.requires_grad = False
for param in dec.parameters():
param.requires_grad = False
# model_name = 'models/' + opt.model
# if os.path.exists(model_name):
# model.load_state_dict(torch.load(model_name, map_location=lambda storage, loc: storage))
# print(model_name)
# model = torch.nn.DataParallel(model, device_ids=gpus_list)
# mat_ncc = mat_ncc.to(device)
model = model.to(device)
enc = enc.to(device)
dec = dec.to(device)
print('===> Loading datasets')
def eval(i):
model.eval()
enc.eval()
dec.eval()
model_name = 'models/GAN_generator_'+str(i)+'.pth'
if os.path.exists(model_name):
model.load_state_dict(torch.load(model_name, map_location=lambda storage, loc: storage))
print(model_name)
HR_filename = os.path.join(opt.image_dataset, 'HR')
Ref_filename = os.path.join(opt.image_dataset, 'Ref')
# LR_filename = os.path.join(opt.image_dataset, 'hazy')
SR_filename = os.path.join(opt.image_dataset, 'SR')
SLR_filename = os.path.join(opt.image_dataset, 'SLR')
gt_image = [join(HR_filename, x) for x in listdir(HR_filename) if is_image_file(x)]
ref_image = [join(Ref_filename, x) for x in listdir(Ref_filename) if is_image_file(x)]
ref_image = sorted(ref_image)
output_image = [join(SR_filename, x) for x in listdir(HR_filename) if is_image_file(x)]
slr_output_image = [join(SLR_filename, x) for x in listdir(HR_filename) if is_image_file(x)]
count = 0
avg_psnr_predicted = 0.0
avg_ssim_predicted = 0.0
avg_psnr_LR = 0.0
avg_ssim_LR = 0.0
t0 = time.time()
# ran_patch = torch.randint(896, (2,))
for i in range(gt_image.__len__()):
HR = Image.open(gt_image[i]).convert('RGB')
HR = modcrop(HR, opt.up_factor)
Ref = Image.open(ref_image[2]).convert('RGB')
Ref = modcrop(Ref, opt.up_factor)
LR = rescale_img(HR, 1.0/opt.up_factor)
with torch.no_grad():
pre_LR, prediction = chop_forward(Ref, LR)
# print("===> Processing: %s || Timer: %.4f sec." % (str(i), (t1 - t0)))
prediction = prediction.data[0].cpu().permute(1, 2, 0)
pre_LR = pre_LR.data[0].cpu().permute(1, 2, 0)
prediction = prediction * 255.0
pre_LR = pre_LR * 255.0
prediction = prediction.clamp(0, 255)
pre_LR = pre_LR.clamp(0, 255)
Image.fromarray(np.uint8(prediction)).save(output_image[i])
Image.fromarray(np.uint8(pre_LR)).save(slr_output_image[i])
GT = np.array(HR).astype(np.float32)
GT_Y = rgb2ycbcr(GT)
LR = np.array(LR).astype(np.float32)
LR_Y = rgb2ycbcr(LR)
prediction = np.array(prediction).astype(np.float32)
pre_LR = np.array(pre_LR).astype(np.float32)
prediction_Y = rgb2ycbcr(prediction)
pre_LR_Y = rgb2ycbcr(pre_LR)
psnr_predicted = PSNR(prediction_Y, GT_Y, shave_border=opt.up_factor)
ssim_predicted = SSIM(prediction_Y, GT_Y, shave_border=opt.up_factor)
avg_psnr_predicted += psnr_predicted
avg_ssim_predicted += ssim_predicted
psnr_predicted = PSNR(pre_LR_Y, LR_Y, shave_border=1)
ssim_predicted = SSIM(pre_LR_Y, LR_Y, shave_border=1)
avg_psnr_LR += psnr_predicted
avg_ssim_LR += ssim_predicted
count += 1
t1 = time.time()
avg_psnr_predicted = avg_psnr_predicted / count
avg_ssim_predicted = avg_ssim_predicted / count
avg_psnr_LR = avg_psnr_LR / count
avg_ssim_LR = avg_ssim_LR / count
avg_time_predicted = t1 - t0
print("PSNR_predicted= {:.4f} || "
"SSIM_predicted= {:.4f} || "
"PSNR_LR= {:.4f} || "
"SSIM_LR= {:.4f} || Time= {:.4f} ".format(
avg_psnr_predicted,
avg_ssim_predicted,
avg_psnr_LR,
avg_ssim_LR,
avg_time_predicted))
transform = transforms.Compose([
transforms.ToTensor(), # range [0, 255] -> [0.0,1.0]
]
)
def chop_forward(ref, img):
img = transform(img).unsqueeze(0)
ref = transform(ref).unsqueeze(0)
testset = utils.TensorDataset(ref, img)
test_dataloader = utils.DataLoader(testset, num_workers=opt.threads,
drop_last=False, batch_size=opt.testBatchSize, shuffle=False)
std_z = torch.from_numpy(np.random.normal(0, 1, (1, 256))).float()
z_q = std_z.to(device)
for iteration, batch in enumerate(test_dataloader, 1):
ref, input = batch[0].to(device), batch[1].to(device)
batch_size, channels, img_height, img_width = input.size()
# eps = torch.randn(input.shape[0], 64, 1, 1).to(device)
# eps = torch.from_numpy(np.random.normal(0, 1, (input.shape[0], 3, 256, 256))).float()
# eps = eps.to(device)
#
# LR_patches = patchify_tensor(input, patch_size=opt.patch_size, overlap=opt.stride)
# n_patches = LR_patches.size(0)
# out_box = []
# with torch.no_grad():
# for p in range(n_patches):
# LR_input = LR_patches[p:p + 1]
# LR_feat = enc(F.interpolate(LR_input, scale_factor=opt.up_factor, mode='bicubic'))
# ref_feat = enc(ref)
# SR, _ = model(LR_input, LR_feat['r41'], ref_feat['r41'])
# out_box.append(SR)
#
# out_box = torch.cat(out_box, 0)
# SR = recompose_tensor(out_box, opt.up_factor * img_height, opt.up_factor * img_width,
# overlap=opt.up_factor * opt.stride)
LR_feat = enc(F.interpolate(input, scale_factor=opt.up_factor, mode='bicubic'))
ref_feat = enc(ref)
SR, _ = model(input, LR_feat['r41'], ref_feat['r41'])
LR = F.interpolate(SR, scale_factor=1/opt.up_factor, mode='bicubic')
return LR, SR
##Eval Start!!!!
for i in range(5, 475, 5):
eval(i)