forked from lxuechen/inference-suboptimality
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlocal_ffg.py
156 lines (127 loc) · 5.18 KB
/
local_ffg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import sys
from tqdm import tqdm
import argparse
import numpy as np
import torch
import torch.utils.data
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from utils.math_ops import log_bernoulli, log_normal, log_mean_exp, safe_repeat
from utils.hparams import HParams
from utils.helper import get_model, get_loaders
parser = argparse.ArgumentParser(description='local_factorized_gaussian')
# action configuration flags
parser.add_argument('--no-cuda', '-nc', action='store_true')
parser.add_argument('--debug', action='store_true', help='debug mode')
# model configuration flags
parser.add_argument('--z-size', '-zs', type=int, default=50)
parser.add_argument('--batch-size', '-bs', type=int, default=100)
parser.add_argument('--eval-path', '-ep', type=str, default='model.pth',
help='path to load evaluation ckpt (default: model.pth)')
parser.add_argument('--dataset', '-d', type=str, default='mnist',
choices=['mnist', 'fashion', 'cifar'],
help='dataset to train and evaluate on (default: mnist)')
parser.add_argument('--has-flow', '-hf', action='store_true', help='inference uses FLOW')
parser.add_argument('--n-flows', '-nf', type=int, default=2, help='number of flows')
parser.add_argument('--wide-encoder', '-we', action='store_true',
help='use wider layer (more hidden units for FC, more channels for CIFAR)')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
def get_default_hparams():
return HParams(
z_size=args.z_size,
act_func=F.elu,
has_flow=args.has_flow,
n_flows=args.n_flows,
wide_encoder=args.wide_encoder,
cuda=args.cuda,
hamiltonian_flow=False
)
def optimize_local_gaussian(
log_likelihood,
model,
data_var,
k=100,
check_every=100,
sentinel_thres=10,
debug=False
):
"""data_var should be (cuda) variable."""
B = data_var.size()[0]
z_size = model.z_size
data_var = safe_repeat(data_var, k)
zeros = Variable(torch.zeros(B*k, z_size).type(model.dtype))
mean = Variable(torch.zeros(B*k, z_size).type(model.dtype), requires_grad=True)
logvar = Variable(torch.zeros(B*k, z_size).type(model.dtype), requires_grad=True)
optimizer = optim.Adam([mean, logvar], lr=1e-3)
best_avg, sentinel, prev_seq = 999999, 0, []
# perform local opt
time_ = time.time()
for epoch in range(1, 999999):
eps = Variable(torch.FloatTensor(mean.size()).normal_().type(model.dtype))
z = eps.mul(logvar.mul(0.5).exp_()).add_(mean)
x_logits = model.decode(z)
logpz = log_normal(z, zeros, zeros)
logqz = log_normal(z, mean, logvar)
logpx = log_likelihood(x_logits, data_var)
optimizer.zero_grad()
loss = -torch.mean(logpx + logpz - logqz)
loss_np = loss.data.cpu().numpy()
loss.backward()
optimizer.step()
prev_seq.append(loss_np)
if epoch % check_every == 0:
last_avg = np.mean(prev_seq)
if debug: # debugging helper
sys.stderr.write(
'Epoch %d, time elapse %.4f, last avg %.4f, prev best %.4f\n' % \
(epoch, time.time()-time_, -last_avg, -best_avg)
)
if last_avg < best_avg:
sentinel, best_avg = 0, last_avg
else:
sentinel += 1
if sentinel > sentinel_thres:
break
prev_seq = []
time_ = time.time()
# evaluation
eps = Variable(torch.FloatTensor(B*k, z_size).normal_().type(model.dtype))
z = eps.mul(logvar.mul(0.5).exp_()).add_(mean)
logpz = log_normal(z, zeros, zeros)
logqz = log_normal(z, mean, logvar)
logpx = log_likelihood(model.decode(z), data_var)
elbo = logpx + logpz - logqz
vae_elbo = torch.mean(elbo)
iwae_elbo = torch.mean(log_mean_exp(elbo.view(k, -1).transpose(0, 1)))
return vae_elbo.data[0], iwae_elbo.data[0]
def main():
train_loader, test_loader = get_loaders(
dataset=args.dataset,
evaluate=True, batch_size=args.batch_size
)
model = get_model(args.dataset, get_default_hparams())
model.load_state_dict(torch.load(args.eval_path)['state_dict'])
model.eval()
vae_record, iwae_record = [], []
time_ = time.time()
for i, (batch, _) in tqdm(enumerate(train_loader)):
batch = Variable(batch.type(model.dtype))
elbo, iwae = optimize_local_gaussian(log_bernoulli, model, batch, debug=args.debug)
vae_record.append(elbo)
iwae_record.append(iwae)
print ('Local opt w/ ffg, batch %d, time elapse %.4f, ELBO %.4f, IWAE %.4f' % \
(i+1, time.time()-time_, elbo, iwae))
print ('mean of ELBO so far %.4f, mean of IWAE so far %.4f' % \
(np.nanmean(vae_record), np.nanmean(iwae_record)))
time_ = time.time()
print ('Finishing...')
print ('Average ELBO %.4f, IWAE %.4f' % (np.nanmean(vae_record), np.nanmean(iwae_record)))
if __name__ == '__main__':
main()