forked from martinkersner/train-DeepLab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeeplab.py
executable file
·106 lines (82 loc) · 2.99 KB
/
deeplab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#!/usr/bin/env python
# Martin Kersner, m.kersner@gmail.com
# 2016/03/11
from __future__ import print_function
caffe_root = 'code/'
import sys
sys.path.insert(0, caffe_root + 'python')
import os
import numpy as np
from PIL import Image as PILImage
import matplotlib.pyplot as plt
import caffe
from utils import pascal_palette_invert, pascal_mean_values
from segmenter import Segmenter
def main():
img_size = 505
gpu_id, net_path, model_path, img_paths = process_arguments(sys.argv)
palette = pascal_palette_invert()
net = Segmenter(net_path, model_path, gpu_id)
for img_path in img_paths:
img, cur_h, cur_w = preprocess_image(img_path, img_size)
segm_result = net.predict([img])
segm_post = postprocess_segmentation(segm_result, cur_h, cur_w, palette)
concatenate = True
segm_name = os.path.basename(img_path).split('.')[0]+'-label.png'
save_result(segm_post, segm_name, concatenate, img_path)
def preprocess_image(img_path, img_size):
if not os.path.exists(img_path):
print(img_path)
return None, 0, 0
input_image = 255 * caffe.io.load_image(img_path)
image = PILImage.fromarray(np.uint8(input_image))
image = np.array(image)
mean_vec = np.array([103.939, 116.779, 123.68], dtype=np.float32)
reshaped_mean_vec = mean_vec.reshape(1, 1, 3);
preprocess_img = image[:,:,::-1]
preprocess_img = preprocess_img - reshaped_mean_vec
# Pad as necessary
cur_h, cur_w, cur_c = preprocess_img.shape
pad_h = img_size - cur_h
pad_w = img_size - cur_w
preprocess_img = np.pad(preprocess_img, pad_width=((0, pad_h), (0, pad_w), (0, 0)), mode = 'constant', constant_values = 0)
return preprocess_img, cur_h, cur_w
def postprocess_segmentation(segmentation, cur_h, cur_w, palette):
segmentation_tmp = segmentation[0:cur_h, 0:cur_w]
postprocess_img = PILImage.fromarray(segmentation_tmp)
postprocess_img.putpalette(palette)
return postprocess_img
def process_arguments(argv):
gpu_id = None
net_path = None
model_path = None
img_paths = None
if len(argv) >= 5:
gpu_id = int(argv[1])
net_path = argv[2]
model_path = argv[3]
img_paths = argv[4:]
else:
help()
return gpu_id, net_path, model_path, img_paths
def save_result(output_img, img_name, concatenate, input_img):
if concatenate == False:
output_img.save(img_name)
else:
input_img = PILImage.open(input_img)
w = input_img.size[0] + output_img.size[0]
h = input_img.size[1]
concatate_img = PILImage.new("RGB", (w, h))
concatate_img.paste(input_img, (0, 0))
concatate_img.paste(output_img, (input_img.size[0], 0))
concatate_img.save(img_name)
def help():
print('Usage: python deeplab.py GPU_ID NET MODEL IMAGE\n'
'GPU_ID specifies gpu number used for computation.\n'
'NET file describing network (prototxt extension).\n'
'MODEL file generated by caffe (caffemodel extension).\n'
'IMAGE one image has to be passed as argument.'
, file=sys.stderr)
exit()
if __name__ == '__main__':
main()