diff --git a/tests/test_text_generation_example.py b/tests/test_text_generation_example.py index ad2195bb75..b7349b5f02 100644 --- a/tests/test_text_generation_example.py +++ b/tests/test_text_generation_example.py @@ -383,7 +383,8 @@ def test_text_generation_bf16_1x( check_output=check_output, ) - +@pytest.mark.skipif(condition=not bool(int(os.environ.get("GAUDI2_CI", "0"))), + reason="Skipping test for G1") @pytest.mark.parametrize( "model_name, world_size, batch_size, reuse_cache, input_len, output_len, baseline", MODELS_TO_TEST["fp8"] ) @@ -412,6 +413,8 @@ def test_text_generation_fp8( ) +@pytest.mark.skipif(condition=not bool(int(os.environ.get("GAUDI2_CI", "0"))), + reason="Skipping test for G1") @pytest.mark.parametrize( "model_name, world_size, batch_size, reuse_cache, input_len, output_len, baseline", MODELS_TO_TEST["load_quantized_model_with_autogptq"], @@ -447,17 +450,23 @@ def test_text_generation_deepspeed(model_name: str, baseline: float, world_size: _test_text_generation(model_name, baseline, token, deepspeed=True, world_size=world_size, batch_size=batch_size) +@pytest.mark.skipif(condition=not bool(int(os.environ.get("GAUDI2_CI", "0"))), + reason="Skipping test for G1") @pytest.mark.parametrize("model_name, baseline", MODELS_TO_TEST["torch_compile"]) def test_text_generation_torch_compile(model_name: str, baseline: float, token: str): _test_text_generation(model_name, baseline, token, torch_compile=True) +@pytest.mark.skipif(condition=not bool(int(os.environ.get("GAUDI2_CI", "0"))), + reason="Skipping test for G1") @pytest.mark.parametrize("model_name, baseline", MODELS_TO_TEST["torch_compile_distributed"]) def test_text_generation_torch_compile_distributed(model_name: str, baseline: float, token: str): world_size = 8 _test_text_generation(model_name, baseline, token, deepspeed=True, world_size=world_size, torch_compile=True) +@pytest.mark.skipif(condition=not bool(int(os.environ.get("GAUDI2_CI", "0"))), + reason="Skipping test for G1") @pytest.mark.parametrize("model_name, baseline", MODELS_TO_TEST["distributed_tp"]) def test_text_generation_distributed_tp(model_name: str, baseline: float, token: str): world_size = 8 @@ -480,6 +489,8 @@ def test_text_generation_contrastive_search( _test_text_generation(model_name, baseline, token, batch_size, reuse_cache, contrastive_search=True) +@pytest.mark.skipif(condition=not bool(int(os.environ.get("GAUDI2_CI", "0"))), + reason="Skipping test for G1") @pytest.mark.parametrize("model_name, batch_size, reuse_cache, baseline", MODELS_TO_TEST["beam_search"]) def test_text_generation_beam_search(model_name: str, baseline: float, batch_size: int, reuse_cache: bool, token: str): _test_text_generation(model_name, baseline, token, batch_size, reuse_cache, num_beams=3)