-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathloss_functions.py
397 lines (338 loc) · 20.1 KB
/
loss_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
import copy
import torch
import utils
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from skimage.measure import label
class DINOLoss(nn.Module):
def __init__(self, out_dim, ncrops, warmup_teacher_temp, teacher_temp,
warmup_teacher_temp_epochs, nepochs, student_temp=0.1,
surrogate_momentum=0.9):
super().__init__()
self.student_temp = student_temp
self.surrogate_momentum = surrogate_momentum
self.ncrops = ncrops
self.register_buffer("surrogate", torch.zeros(1, out_dim))
# we apply a warm up for the teacher temperature because
# a too high temperature makes the training instable at the beginning
self.teacher_temp_schedule = np.concatenate((
np.linspace(warmup_teacher_temp,
teacher_temp, warmup_teacher_temp_epochs),
np.ones(nepochs - warmup_teacher_temp_epochs) * teacher_temp
))
def forward(self, student_output, teacher_output, epoch):
"""
Cross-entropy between softmax outputs of the teacher and student networks.
"""
student_out = student_output / self.student_temp
student_out = student_out.chunk(self.ncrops)
# teacher surrogateing and sharpening
temp = self.teacher_temp_schedule[epoch]
teacher_out = F.softmax((teacher_output - self.surrogate) / temp, dim=-1)
teacher_out = teacher_out.detach().chunk(2)
total_loss = 0
n_loss_terms = 0
for iq, q in enumerate(teacher_out):
for v in range(len(student_out)):
if v == iq:
# we skip cases where student and teacher operate on the same view
continue
loss = torch.sum(-q * F.log_softmax(student_out[v], dim=-1), dim=-1)
total_loss += loss.mean()
n_loss_terms += 1
total_loss /= n_loss_terms
self.update_surrogate(teacher_output)
return total_loss
@torch.no_grad()
def update_surrogate(self, teacher_output):
"""
Update surrogate used for teacher output.
"""
batch_surrogate = torch.sum(teacher_output, dim=0, keepdim=True)
dist.all_reduce(batch_surrogate)
batch_surrogate = batch_surrogate / (len(teacher_output) * dist.get_world_size())
# ema update
self.surrogate = self.surrogate * self.surrogate_momentum + batch_surrogate * (1 - self.surrogate_momentum)
class CELoss(nn.Module):
def __init__(self, nclasses, in_dim, batch_size):
super(CELoss, self).__init__()
self.nclasses = nclasses
self.in_dim = in_dim
self.batch_size = batch_size
self.linear = nn.Linear(self.in_dim, self.nclasses,)
if torch.cuda.is_available():
self.loss = nn.CrossEntropyLoss().cuda()
else:
self.loss = nn.CrossEntropyLoss()
def forward(self, student_input, labels):
"""
Cross-entropy between softmax outputs of the teacher and student networks.
"""
logits = self.linear(student_input.float())
total_loss = 0
for crop in range(2): # only interate through two global crops
idx_start = crop * self.batch_size
idx_end = idx_start + self.batch_size
total_loss += self.loss(logits[idx_start:idx_end], labels) / self.batch_size
total_loss /= 2 # divide two global crops
return total_loss
class SupervisedContrastiveDINOLoss(nn.Module):
def __init__(self, out_dim, ncrops, warmup_teacher_temp, teacher_temp,
warmup_teacher_temp_epochs, nepochs, batch_size_per_gpu, student_temp=0.1,
surrogate_momentum=0.9, use_local_crops = True, multi_layer_loss = False, num_heads = 6, random_crops_number=0):
super().__init__()
self.student_temp = student_temp
self.surrogate_momentum = surrogate_momentum
self.ncrops = ncrops
self.register_buffer("surrogate", torch.zeros(1, out_dim))
# we apply a warm up for the teacher temperature because
# a too high temperature makes the training instable at the beginning
self.teacher_temp_schedule = np.concatenate((
np.linspace(warmup_teacher_temp,
teacher_temp, warmup_teacher_temp_epochs),
np.ones(nepochs - warmup_teacher_temp_epochs) * teacher_temp
))
self.batch_size_per_gpu = batch_size_per_gpu
self.bs_crops = self.batch_size_per_gpu * 1
self.bs_local_crops = self.batch_size_per_gpu * (self.ncrops - 1)
self.random_crops_number = random_crops_number
self.bs_random_crops = self.batch_size_per_gpu * self.random_crops_number
self.use_local_crops = use_local_crops
self.multi_layer_loss = multi_layer_loss
self.student_feat_out = {}
self.teacher_feat_out = {}
self.num_heads = num_heads
def forward(self, student_output, teacher_output, labels, epoch, student_patches = None, teacher_patches = None):
student_out = student_output / self.student_temp
student_out = F.log_softmax(student_out, dim=-1)
# teacher surrogateing and sharpening
temp = self.teacher_temp_schedule[epoch]
teacher_out = F.softmax((teacher_output - self.surrogate) / temp, dim=-1, dtype = student_out.dtype).detach()
extended_labels_teacher = labels#.repeat(1)
student_crops = int(student_output.shape[0] // self.batch_size_per_gpu)
extended_labels_student = labels.repeat(student_crops)
n = self.bs_crops + self.bs_local_crops + self.bs_random_crops if student_crops > 1 else self.bs_crops
if not self.use_local_crops:
same_idx_matrix = (extended_labels_teacher.unsqueeze(1) == extended_labels_teacher.unsqueeze(0)) * 1.0
if student_crops >1:
same_idx_matrix = torch.concat([same_idx_matrix, torch.eye(self.batch_size_per_gpu, self.batch_size_per_gpu).repeat(1, self.ncrops - 1 + self.random_crops_number).cuda()], axis = 1)
else:
same_idx_matrix = (extended_labels_teacher.unsqueeze(1) == extended_labels_student.unsqueeze(0)) * 1.0
mask_global_id_matrix = torch.concat([torch.eye(self.bs_crops, self.bs_crops), torch.zeros([self.bs_crops, n - self.bs_crops])], axis = 1).cuda()
valid_idx_matrix = same_idx_matrix * (1 - mask_global_id_matrix)
valid_idx_count = valid_idx_matrix.sum()
loss_matrix = -teacher_out.matmul(student_out.T)
valid_loss_matrix = loss_matrix * valid_idx_matrix
total_loss = valid_loss_matrix.sum() / valid_idx_count
self.update_surrogate(teacher_output)
return total_loss
@torch.no_grad()
def update_surrogate(self, teacher_output):
"""
Update surrogate used for teacher output.
"""
batch_surrogate = torch.sum(teacher_output, dim=0, keepdim=True)
dist.all_reduce(batch_surrogate)
batch_surrogate = batch_surrogate / (len(teacher_output) * dist.get_world_size())
# ema update
self.surrogate = self.surrogate * self.surrogate_momentum + batch_surrogate * (1 - self.surrogate_momentum)
def student_hook_fn_forward_qkv(self, module, input, output):
if self.use_local_crops == False:
if 'qkv' not in self.student_feat_out:
self.student_feat_out["qkv"] = output
else:
if 'qkv_global' not in self.student_feat_out:
self.student_feat_out["qkv_global"] = output
else:
self.student_feat_out["qkv_local"] = output
def teacher_hook_fn_forward_qkv(self, module, input, output):
self.teacher_feat_out["qkv"] = output
def reset(self, ):
self.student_feat_out = {}
self.teacher_feat_out = {}
def generate_foreground_mask(attn, gaussianblur_kernel_size=1, blur_sigma=1, foreground_threshold=0.6,
remove_component_less_than_pixels=3):
N, C = attn.shape
w = int(np.sqrt(C))
val, idx = torch.sort(attn)
val /= torch.sum(val, dim=-1, keepdim=True)
cumval = torch.cumsum(val, dim=-1)
th_attn = cumval > foreground_threshold
idx2 = torch.argsort(idx)
th_attn = torch.gather(th_attn, dim=-1, index=idx2)
th_attn_original = copy.deepcopy(th_attn)
for j, th_att in enumerate(th_attn):
labelled = label(th_att.reshape(w, w).cpu().numpy(), background = 0)
for k in range(1, np.max(labelled) + 1):
mask = (labelled == k).reshape(-1)
if np.sum(mask) <= remove_component_less_than_pixels:
th_attn[j][mask] = 0
if th_attn[j].max() == False:
th_attn[j] = th_attn_original[j]
return th_attn
class SMKDLoss(nn.Module):
def __init__(self, out_dim, patch_out_dim, ngcrops, nlcrops, warmup_teacher_temp,
teacher_temp, warmup_teacher_temp2, teacher_temp2,
warmup_teacher_temp_epochs, nepochs, student_temp=0.1,
center_momentum=0.9, center_momentum2=0.9,
lambda1=1.0, lambda2=1.0, lambda3=1.0, mim_start_epoch=0,
batch_size_per_gpu = None, patch_num_global_crops = None, weighted_pool=False,
):
super().__init__()
self.student_temp = student_temp
self.center_momentum = center_momentum
self.center_momentum2 = center_momentum2
self.ngcrops = ngcrops
self.nlcrops = nlcrops
self.ncrops = ngcrops + nlcrops
self.register_buffer("center", torch.zeros(1, out_dim))
self.register_buffer("center2", torch.zeros(1, 1, patch_out_dim))
self.lambda1 = lambda1 # cls
self.lambda2 = lambda2 # patch
self.lambda3 = lambda3 # MIM
self.batch_size_per_gpu = batch_size_per_gpu
self.patch_num_global_crops = patch_num_global_crops
self.weighted_pool = weighted_pool
# we apply a warm up for the teacher temperature because
# a too high temperature makes the training instable at the beginning
self.teacher_temp_schedule = np.concatenate((
np.linspace(warmup_teacher_temp,
teacher_temp, warmup_teacher_temp_epochs),
np.ones(nepochs - warmup_teacher_temp_epochs) * teacher_temp
))
self.teacher_temp2_schedule = np.concatenate((
np.linspace(warmup_teacher_temp2,
teacher_temp2, warmup_teacher_temp_epochs),
np.ones(nepochs - warmup_teacher_temp_epochs) * teacher_temp2
)) if mim_start_epoch == 0 else np.concatenate((
np.ones(mim_start_epoch) * warmup_teacher_temp2,
np.linspace(warmup_teacher_temp2,
teacher_temp2, warmup_teacher_temp_epochs),
np.ones(nepochs - warmup_teacher_temp_epochs - mim_start_epoch) * teacher_temp2
))
def forward(self, student_output, teacher_output, student_local_cls, student_mask, epoch, labels=None, teacher_backbone=None):
# read student, and teacher features
if type(teacher_output[1]) == tuple:
_, student_patch_features = student_output[0][:,0,:].detach(), student_output[0][:,1:,:].detach()
_, teacher_patch_features = teacher_output[0][:,0,:], teacher_output[0][:,1:,:]
student_cls, student_patch = student_output[1]
teacher_cls, teacher_patch = teacher_output[1]
student_attn = student_output[2].mean(axis = 1)[:, 0, 1:].detach()
student_attn = student_attn / student_attn.sum(axis = -1, keepdims = True)
teacher_attn = teacher_output[2].mean(axis = 1)[:, 0, 1:].detach()
teacher_attn = teacher_attn / teacher_attn.sum(axis = -1, keepdims = True)
else:
student_cls, student_patch = student_output[0]
teacher_cls, teacher_patch = teacher_output[0]
if student_local_cls is not None:
student_cls = torch.cat([student_cls, student_local_cls])
# [CLS] and patch for global patches
student_cls = student_cls / self.student_temp
student_cls_c = student_cls.chunk(self.ncrops)
student_patch = student_patch / self.student_temp
student_patch_c = student_patch.chunk(self.ngcrops)
# teacher centering and sharpening
temp = self.teacher_temp_schedule[epoch]
temp2 = self.teacher_temp2_schedule[epoch]
teacher_cls_c = F.softmax((teacher_cls - self.center) / temp, dim=-1)
teacher_cls_c = teacher_cls_c.detach().chunk(self.ngcrops)
teacher_patch_c = F.softmax((teacher_patch - self.center2) / temp2, dim=-1)
teacher_patch_c = teacher_patch_c.detach().chunk(self.ngcrops)
total_loss1, n_loss_terms1 = 0, 0
total_loss2, n_loss_terms2 = torch.Tensor([0]).cuda(), 0
total_loss3, n_loss_terms3 = torch.Tensor([0]).cuda(), 0
if labels is not None:
same_idx_matrix = ((labels.unsqueeze(1) == labels.unsqueeze(0))*1.0).cuda()
same_idx_count = same_idx_matrix.sum()
same_idx_matrix_remove_diagonal = same_idx_matrix - torch.eye(self.batch_size_per_gpu).cuda()
same_idx_count_remove_diagonal = same_idx_count - self.batch_size_per_gpu
# [cls loss]: self-supervised contrastive between a global and local views, supervised contrastive between two global views
for q in range(len(teacher_cls_c)):
for v in range(len(student_cls_c)):
if v != q:
if labels is not None and v < self.ngcrops: # supervised contrastive between two different global views
loss_matrix = -teacher_cls_c[q].matmul(F.log_softmax(student_cls_c[v], dim=-1).T.float())
loss1 = loss_matrix * same_idx_matrix_remove_diagonal
total_loss1 += loss1.sum()
n_loss_terms1 += same_idx_count_remove_diagonal
else: # self-supervised contrastive between a global and local view
loss1 = torch.sum(-teacher_cls_c[q] * F.log_softmax(student_cls_c[v], dim=-1), dim=-1)
total_loss1 += loss1.sum() #mean()
n_loss_terms1 += len(loss1)
if v == q and labels is not None: # supervised contrastive between two same global views
loss_matrix = -teacher_cls_c[q].matmul(F.log_softmax(student_cls_c[v], dim=-1).T.float())
loss1 = loss_matrix * same_idx_matrix_remove_diagonal
total_loss1 += loss1.sum() #/ same_idx_count
n_loss_terms1 += same_idx_count_remove_diagonal
# [MIM loss]: copied from ibot
if self.lambda3 > 0:
for i in range(self.ngcrops):
loss3 = torch.sum(-teacher_patch_c[i] * F.log_softmax(student_patch_c[i], dim=-1), dim=-1)
mask = student_mask[i].flatten(-2, -1)
loss3 = torch.sum(loss3 * mask.float(), dim=-1) / mask.sum(dim=-1).clamp(min=1.0)
total_loss3 += loss3.mean()
n_loss_terms3 += 1
# [patch loss]: supervised contrastive between two global views.
if self.lambda2 > 0: # pre-calculate student_patch_aggregated for student and teacher_patch_features_normalized for teacher
student_patch_features_normalized = nn.functional.normalize(student_patch_features, dim = -1).detach()
teacher_patch_features_normalized = nn.functional.normalize(teacher_patch_features, dim = -1)
student_patch_features_normalized_c = student_patch_features_normalized.chunk(self.ngcrops)
teacher_patch_features_normalized_c = teacher_patch_features_normalized.chunk(self.ngcrops)
teacher_attn_c = teacher_attn.chunk(self.ngcrops)
if labels is not None: # supervised contrastive
label_groups = sorted(utils.list_duplicates(labels.tolist(), pseudo=False))
else: # self-supervised
label_groups = sorted(utils.list_duplicates(list(range(self.batch_size_per_gpu)), pseudo=True))
for s in range(self.ngcrops):
for t in range(self.ngcrops):
if s != t:
for _, label_idx in label_groups:
# find matched teacher patches
idx_to_select = utils.crops_in_same_class(label_idx, self.batch_size_per_gpu, 1)
selected_student_patch_features_normalized = student_patch_features_normalized_c[s][idx_to_select, :, :]
selected_teacher_patch_features_normalized = teacher_patch_features_normalized_c[t][idx_to_select, :, :]
selected_student_patch = student_patch_c[s][idx_to_select, :, :]
selected_teacher_patch = teacher_patch_c[s][idx_to_select, :, :]
selected_teacher_attn_1d = teacher_attn_c[t][idx_to_select, :].reshape(-1)
c = selected_student_patch.shape[2]
selected_student_patch_2d = selected_student_patch.permute(2, 0, 1).reshape(c, -1).permute(1, 0)
selected_teacher_patch_2d = selected_teacher_patch.permute(2, 0, 1).reshape(c, -1).permute(1, 0)
qk_similarity = torch.einsum("snc, tNC -> tsNn", selected_student_patch_features_normalized,
selected_teacher_patch_features_normalized)
best_match_student = torch.argmax(qk_similarity, dim = -1)
emd_dim = best_match_student.shape[-1]
for i in range(len(best_match_student)):
best_match_student_2d = torch.index_select(selected_student_patch_2d, 0, best_match_student[i].reshape(-1))
loss2 = torch.sum(-selected_teacher_patch_2d * F.log_softmax(best_match_student_2d, dim=-1), dim=-1)
if self.weighted_pool:
loss2 = loss2 * selected_teacher_attn_1d
total_loss2 += loss2.sum()
n_loss_terms2 += 1
else:
loss2[i*emd_dim:(i+1)*emd_dim] = 0
if len(loss2) > emd_dim:
total_loss2 += loss2.sum() / (len(loss2)-emd_dim)
n_loss_terms2 += 1
total_loss1 = total_loss1 / n_loss_terms1 * self.lambda1
if self.lambda2 > 0:
total_loss2 = total_loss2 / n_loss_terms2 * self.lambda2
if self.lambda3 > 0:
total_loss3 = total_loss3 / n_loss_terms3 * self.lambda3
total_loss = dict(cls=total_loss1, patch=total_loss2, mim=total_loss3, loss=total_loss1 + total_loss2 + total_loss3)
self.update_center(teacher_cls, teacher_patch)
return total_loss
@torch.no_grad()
def update_center(self, teacher_cls, teacher_patch):
"""
Update center used for teacher output.
"""
cls_center = torch.sum(teacher_cls, dim=0, keepdim=True)
dist.all_reduce(cls_center)
cls_center = cls_center / (len(teacher_cls) * dist.get_world_size())
self.center = self.center * self.center_momentum + cls_center * (1 - self.center_momentum)
patch_center = torch.sum(teacher_patch.mean(1), dim=0, keepdim=True)
dist.all_reduce(patch_center)
patch_center = patch_center / (len(teacher_patch) * dist.get_world_size())
self.center2 = self.center2 * self.center_momentum2 + patch_center * (1 - self.center_momentum2)