-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathlightrag_zhipu_postgres_demo.py
116 lines (103 loc) · 3.63 KB
/
lightrag_zhipu_postgres_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import asyncio
import logging
import os
import time
from dotenv import load_dotenv
from lightrag import LightRAG, QueryParam
from lightrag.kg.postgres_impl import PostgreSQLDB
from lightrag.llm.zhipu import zhipu_complete
from lightrag.llm.ollama import ollama_embedding
from lightrag.utils import EmbeddingFunc
load_dotenv()
ROOT_DIR = os.environ.get("ROOT_DIR")
WORKING_DIR = f"{ROOT_DIR}/dickens-pg"
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
# AGE
os.environ["AGE_GRAPH_NAME"] = "dickens"
postgres_db = PostgreSQLDB(
config={
"host": "localhost",
"port": 15432,
"user": "rag",
"password": "rag",
"database": "rag",
}
)
async def main():
await postgres_db.initdb()
# Check if PostgreSQL DB tables exist, if not, tables will be created
await postgres_db.check_tables()
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=zhipu_complete,
llm_model_name="glm-4-flashx",
llm_model_max_async=4,
llm_model_max_token_size=32768,
enable_llm_cache_for_entity_extract=True,
embedding_func=EmbeddingFunc(
embedding_dim=768,
max_token_size=8192,
func=lambda texts: ollama_embedding(
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
),
),
kv_storage="PGKVStorage",
doc_status_storage="PGDocStatusStorage",
graph_storage="PGGraphStorage",
vector_storage="PGVectorStorage",
)
# Set the KV/vector/graph storage's `db` property, so all operation will use same connection pool
rag.doc_status.db = postgres_db
rag.full_docs.db = postgres_db
rag.text_chunks.db = postgres_db
rag.llm_response_cache.db = postgres_db
rag.key_string_value_json_storage_cls.db = postgres_db
rag.chunks_vdb.db = postgres_db
rag.relationships_vdb.db = postgres_db
rag.entities_vdb.db = postgres_db
rag.graph_storage_cls.db = postgres_db
rag.chunk_entity_relation_graph.db = postgres_db
# add embedding_func for graph database, it's deleted in commit 5661d76860436f7bf5aef2e50d9ee4a59660146c
rag.chunk_entity_relation_graph.embedding_func = rag.embedding_func
with open(f"{ROOT_DIR}/book.txt", "r", encoding="utf-8") as f:
await rag.ainsert(f.read())
print("==== Trying to test the rag queries ====")
print("**** Start Naive Query ****")
start_time = time.time()
# Perform naive search
print(
await rag.aquery(
"What are the top themes in this story?", param=QueryParam(mode="naive")
)
)
print(f"Naive Query Time: {time.time() - start_time} seconds")
# Perform local search
print("**** Start Local Query ****")
start_time = time.time()
print(
await rag.aquery(
"What are the top themes in this story?", param=QueryParam(mode="local")
)
)
print(f"Local Query Time: {time.time() - start_time} seconds")
# Perform global search
print("**** Start Global Query ****")
start_time = time.time()
print(
await rag.aquery(
"What are the top themes in this story?", param=QueryParam(mode="global")
)
)
print(f"Global Query Time: {time.time() - start_time}")
# Perform hybrid search
print("**** Start Hybrid Query ****")
print(
await rag.aquery(
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
)
)
print(f"Hybrid Query Time: {time.time() - start_time} seconds")
if __name__ == "__main__":
asyncio.run(main())