-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtraining.py
150 lines (113 loc) · 4.42 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from tqdm import tqdm
import torch
import torch.nn.functional as F
import time
import os
from testing import get_scores, get_metrics
from pprint import pprint
def test_epoch(model, test_dataloader, config):
model.eval()
start = time.time()
test_score, test_label = get_scores(model, test_dataloader, config)
best_valid_metrics = get_metrics(test_score, test_label, config.bf_search_min, config.bf_search_max, config.bf_search_step_size, config.display_freq)
print("testing time cost: ", time.time()-start)
print('=' * 30 + 'result' + '=' * 30)
pprint(best_valid_metrics)
def eval_epoch(model, eval_dataloader):
model.eval()
desc = ' - (validation) '
total_loss = 0.0
batch_num = 0
with torch.no_grad():
for batch in tqdm(eval_dataloader, mininterval=2, desc=desc, leave=False):
# prepare data
src_seq = batch
# forward
reconstruct_input = model(src_seq)
loss = cal_performance(
input=src_seq,
reconstruct_input=reconstruct_input
)
# note keeping
total_loss += loss.item()
batch_num += 1
return total_loss/batch_num
def cal_performance(input, reconstruct_input):
return F.mse_loss(input, reconstruct_input)
def train_epoch(model, train_dataloader, optimizer):
''' Epoch operation in training phase'''
model.train()
total_loss = 0.0
batch_num = 0
desc = ' - (Training) '
for batch in tqdm(train_dataloader, mininterval=2, desc=desc, leave=False):
# prepare data
src_seq = batch
# forward
optimizer.zero_grad()
reconstruct_input = model(src_seq)
# backward and update parameters
loss = cal_performance(
input=src_seq,
reconstruct_input=reconstruct_input
)
loss.backward()
optimizer.step()
# note keeping
total_loss += loss.item()
batch_num += 1
return total_loss/batch_num
def train_epoch_VSAE(model, train_dataloader, optimizer, KL_weight=1.):
''' Epoch operation in training phase'''
model.train()
rec_total_loss = 0.0
KL_total_loss = 0.0
batch_num = 0
desc = ' - (Training) '
for batch in tqdm(train_dataloader, mininterval=2, desc=desc, leave=False):
# prepare data
src_seq = batch
# forward
optimizer.zero_grad()
mean, log_var = model.encode_and_variational(src_seq)
z = model.encoder_to_decoder(model.reparameter(mean, log_var))
reconstruct_input = model.decode(src_seq, z)
# backward and update parameters
# reconstruction loss
# batch_size
reconstruction_loss = F.mse_loss(src_seq, reconstruct_input, reduction="none").sum(-1).mean(-1)
# KL loss
# batch_size
KL_loss = 0.5 * (mean.pow(2) + log_var.exp() - log_var - 1).sum(-1)
loss = reconstruction_loss + KL_loss * KL_weight
loss = loss.mean()
loss.backward()
optimizer.step()
# note keeping
rec_total_loss += reconstruction_loss.mean().item()
KL_total_loss += KL_loss.mean().item()
batch_num += 1
return rec_total_loss/batch_num, KL_total_loss/batch_num
def train(model, train_dataloader, valid_dataloader, optimizer, config, test_dataloader=None):
''' Start training '''
valid_losses = []
for epoch_i in range(config.epochs):
print('[ Epoch', epoch_i, ']')
start = time.time()
train_loss = train_epoch_VSAE(
model, train_dataloader, optimizer)
print("train loss ", train_loss, "training time cost: ", time.time()-start)
start = time.time()
valid_loss = eval_epoch(model, valid_dataloader)
print("valid loss ", valid_loss, "validation time cost: ", time.time()-start)
if test_dataloader is not None:
test_epoch(model, test_dataloader, config)
valid_losses += [valid_loss]
checkpoint = {'epoch': epoch_i, 'settings': config, 'model': model.state_dict()}
if not os.path.exists(config.model_save_path):
os.makedirs(config.model_save_path)
model_name = config.save_name + '.chkpt'
model_name = os.path.join(config.model_save_path, model_name)
if valid_loss <= min(valid_losses):
torch.save(checkpoint, model_name)
print(' - [Info] The checkpoint file has been updated.')