-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhandcraft_dataset.py
78 lines (63 loc) · 2.73 KB
/
handcraft_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import pandas as pd
from pathlib import Path
import torch
from sklearn.preprocessing import MinMaxScaler
class PureTestDataset:
def __init__(self, data, labels, device):
self.data = data
self.labels = labels
self.device = device
def __getitem__(self, i):
return torch.tensor(self.data[i], dtype=torch.float).to(self.device).view(-1,1), torch.tensor(self.labels[i], dtype=torch.float).to(self.device)
def __len__(self):
return len(self.data)
class PureTrainDataset:
def __init__(self, data, device):
self.data = data
self.device = device
def __getitem__(self, i):
return torch.tensor(self.data[i], dtype=torch.float).to(self.device).view(-1,1)
def __len__(self):
return len(self.data)
class HandCraft:
def __init__(self, filepath):
self.filepath = filepath
self.load()
def load(self):
df = pd.read_csv(self.filepath, names=["data", "labels"], header=None, index_col=False)
self.scaler = MinMaxScaler()
self.data = self.scaler.fit_transform(df["data"].values.reshape(-1,1)).reshape(-1)
self.data = df["data"].values
self.labels = df["labels"].values
def slidding_window_on_data(self, data, window_size, step, drop_last=False):
slidded_data = []
start = 0
end = start + window_size
while end <= len(data):
slidded_data.append(data[start:end])
start += step
end = start + window_size
return slidded_data
def slidding_window_on_labels(self, labels, window_size, step, drop_last=False):
slidded_labels = []
slidded_window_labels = self.slidding_window_on_data(labels, window_size, step, drop_last)
for slidded_window_label in slidded_window_labels:
slidded_labels.append(slidded_window_label[-1])
return slidded_labels
if __name__ == "__main__":
filepath = Path("../AD-Plot/data/spike.csv")
window_size = 100
step = 1
drop_last = False
hc_spike = HandCraft(filepath)
train_len = int(len(hc_spike.data)/2)
train_data, test_data = hc_spike.data[:train_len], hc_spike.data[train_len:]
import pdb; pdb.set_trace()
train_labels, test_labels = hc_spike.labels[:train_len], hc_spike.labels[train_len:]
train_data = hc_spike.slidding_window_on_data(train_data, window_size, step, drop_last)
test_data = hc_spike.slidding_window_on_data(test_data, window_size, step, drop_last)
test_labels = hc_spike.slidding_window_on_labels(test_labels, window_size, step, drop_last)
device = torch.device("cuda:1")
train_dataset = PureTrainDataset(train_data, device)
test_dataset = PureTestDataset(test_data, test_labels, device)
import pdb; pdb.set_trace()