-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtest_train.py
118 lines (94 loc) · 4.87 KB
/
test_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
from torch.autograd import Variable
from PIL import Image
from torchvision.transforms import ToTensor
import argparse
import os
# from model import *
from model_simple_ff import *
from torchvision import transforms
import cv2
from math import log10, sqrt
def PSNR(original, compressed):
mse = np.mean((original - compressed) ** 2)
if(mse == 0): # MSE is zero means no noise is present in the signal .
# Therefore PSNR have no importance.
return 100
max_pixel = 1.0
# max_pixel = 255.0
try:
psnr = 20 * log10(max_pixel / sqrt(mse))
except:
psnr = 38
return psnr
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--testset_dir', type=str, default='./data/train/')
parser.add_argument('--scale_factor', type=int, default=4)
parser.add_argument('--device', type=str, default='cuda:0')
# parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--model_name', type=str, default='TransSNSR_4xSR_epoch1ablationFF')
return parser.parse_args()
def toTensor(img):
img = torch.from_numpy(img.transpose((2, 0, 1)))
return img.float().div(255)
def test(cfg):
# cap = cv2.VideoCapture('D:/copy_drive_c/data_64/training_data/Blur_1_l_3.mov')
# ret, frame = cap.read()
# # frame = cv2.resize(frame, (88*2,32*2))
# frame = cv2.resize(frame, (0,0), fx=0.25, fy=0.25)
# cv2.imwrite("lr0.png", frame)
spatial_dim = (int(1920/4), int(1080/4))
net = Net(cfg.scale_factor, spatial_dim, cfg).to(cfg.device)
model = torch.load('./log/' + cfg.model_name + '.pth.tar')
net.load_state_dict(model['state_dict'])
net.eval()
file_list = os.listdir(cfg.testset_dir + '/patches_x' + str(cfg.scale_factor))
for idx in range(len(file_list)):
# img_lr_left_list = torch.empty(1,3,5,270,480).to(cfg.device)
# img_lr_right_list = torch.empty(1,3,5,270,480).to(cfg.device)
img_lr_left_list = torch.empty(1,3,5,32,88).to(cfg.device)
img_lr_right_list = torch.empty(1,3,5,32,88).to(cfg.device)
# img_lr_left_list = torch.empty(1,3,5,540,960).to(cfg.device)
# img_lr_right_list = torch.empty(1,3,5,540,960).to(cfg.device)
for i in range(1,6):
LR_left = Image.open(cfg.testset_dir + '/patches_x' + str(cfg.scale_factor) + '/' + file_list[idx] + '/'+str(i)+ '/lr0.png')
LR_right = Image.open(cfg.testset_dir + '/patches_x' + str(cfg.scale_factor) + '/' + file_list[idx] + '/'+str(i)+ '/lr1.png')
LR_left = np.array(LR_left, dtype=np.float32)
LR_right = np.array(LR_right, dtype=np.float32)
ll = toTensor(LR_left)
rr = toTensor(LR_right)
# LR_left, LR_right = ToTensor()(LR_left), ToTensor()(LR_right)
# LR_left, LR_right = LR_left.unsqueeze(0), LR_right.unsqueeze(0)
img_lr_left_list[:,:,i-1,:,:], img_lr_right_list[:,:,i-1,:,:] = Variable(ll).to(cfg.device), Variable(rr).to(cfg.device)
scene_name = file_list[idx]
print('Running Scene ' + scene_name + ' of ' + ' Dataset......')
# HR_left, HR_right, LR_left, LR_right = Variable(HR_left).to(cfg.device), Variable(HR_right).to(cfg.device),\
# Variable(LR_left).to(cfg.device), Variable(LR_right).to(cfg.device)
with torch.no_grad():
SR_left, SR_right = net(img_lr_left_list, img_lr_right_list, is_training=1)
SR_left, SR_right = torch.clamp(SR_left, 0, 1), torch.clamp(SR_right, 0, 1)
save_path = './results/' + cfg.model_name + '/' + cfg.dataset
if not os.path.exists(save_path):
os.makedirs(save_path)
SR_left_img = transforms.ToPILImage()(torch.squeeze(SR_left.data.cpu(), 0))
hr0_path = cfg.testset_dir + '/patches_x' + str(cfg.scale_factor) + '/' + file_list[idx] + '/'+str(3)+ '/hr0.png'
hr1_path = cfg.testset_dir + '/patches_x' + str(cfg.scale_factor) + '/' + file_list[idx] + '/'+str(3)+ '/hr1.png'
hr0 = Image.open(hr0_path)
hr0 = np.array(hr0, dtype=np.float32)
hr0 = Variable(toTensor(hr0))
hr1 = Image.open(hr1_path)
hr1 = np.array(hr1, dtype=np.float32)
hr1 = Variable(toTensor(hr1))
psnr_value0 = PSNR(hr0.cpu().detach().numpy(), SR_left.cpu().detach().numpy())
psnr_value1 = PSNR(hr1.cpu().detach().numpy(), SR_right.cpu().detach().numpy())
print("psnr_value: ", (psnr_value0+psnr_value1)/2)
SR_left_img.save(save_path + '/' + scene_name + '_L.png')
SR_right_img = transforms.ToPILImage()(torch.squeeze(SR_right.data.cpu(), 0))
SR_right_img.save(save_path + '/' + scene_name + '_R.png')
if __name__ == '__main__':
cfg = parse_args()
dataset_list = ['Flickr1024']
for i in range(len(dataset_list)):
cfg.dataset = dataset_list[i]
test(cfg)
print('Finished!')