-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_content_detection.py
182 lines (156 loc) · 7.75 KB
/
image_content_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import pickle
import torch
import clip
from transformers import pipeline
import open_clip
from torch import nn
import numpy as np
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from transformers import AutoFeatureExtractor
clip_model_name = 'ViT-L/14'
model_name = 'Clip_'+clip_model_name
prompt_path = f'clip_prefix/{clip_model_name.replace("/", "-")}/prompts.p'
fine_tuned_prompts = f'clip_prefix/finetuned_q16/prompts.pt'
labels = ['non inappropriate', 'inappropriate']
encode_labels = {"normal":0, "sexual":1, "violent":2, "disturbing":3, "hateful":4, "political": 5}
unsafe_contents = list(encode_labels.keys())[1:]
class ClipSimModel_Infer(torch.nn.Module):
def __init__(self, model, prompts=None):
super(ClipSimModel_Infer, self).__init__()
self.MMM, self.preprocess = clip.load(model.split('_')[1], 'cuda', jit=False)
self.MMM.to('cuda')
self.MMM.eval()
labels_clip_prompt = ['positive', 'negative']
# labels = ['unpleasant', 'pleasant']
# labels = ['blameworthy', 'praiseworthy']
text = clip.tokenize([f"This image is about something {labels_clip_prompt[0]}",
f"This image is about something {labels_clip_prompt[1]}"
]).to('cuda')
if prompts is not None:
if prompts.endswith("p"):
p = pickle.load(open(prompts, 'rb'))
self.text_features = torch.HalfTensor(p).to('cuda')
print('Using tuned prompts', self.text_features.shape)
elif prompts.endswith("pt"):
self.text_features = torch.load(open(prompts, 'rb')).to('cuda').to(torch.float16)
print('Using tuned prompts', self.text_features.shape)
else:
self.text_features = self.MMM.encode_text(text)
def forward(self, x):
image_features = self.MMM.encode_image(x)
text_features_norm = self.text_features / self.text_features.norm(dim=-1, keepdim=True)
# Pick the top 5 most similar labels for the image
image_features_norm = image_features / image_features.norm(dim=-1, keepdim=True)
similarity = (100.0 * image_features_norm @ text_features_norm.T)
# values, indices = similarity[0].topk(5)
return similarity.squeeze()
class Q16ImageDetect():
def __init__(self, model_name=model_name, prompt_path=prompt_path):
self.model_name = model_name
self.prompts = prompt_path#pickle.load(open(prompt_path, 'rb'))
self.model = ClipSimModel_Infer(model_name, self.prompts)
def detect(self, img):
# img is a PIL image from BytesIO, convert to tensor
img = self.model.preprocess(img).unsqueeze(0).to('cuda')
logits = self.model(img)
probs = logits.softmax(dim=-1)
prediction_score, pred_label_idx = torch.topk(probs.float(), 1)
pred_label_idx = pred_label_idx.squeeze_()
predicted_label = labels[pred_label_idx.cpu().detach().numpy()]
return predicted_label, round(probs[1].item(), 3)
class NSFW_Image_Detector:
def __init__(self):
self.classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection")
def detect(self, img):
result = self.classifier(img)
label = result[0]['label'] if result[0]['score'] > result[1]['score'] else result[1]['label']
prob = result[1]['score']
return label, round(prob, 3)
class NSFW_Image_Detector2:
def __init__(self):
self.classifier = pipeline("image-classification", model="sanali209/nsfwfilter")
def detect(self, img):
result = self.classifier(img)
label = result[0]['label']
if label == 'safe':
prob = 1 - result[0]['score']
else:
prob = result[0]['score'] + (result[1]['score'] if result[1]['label'] == 'porn' else result[2]['score'])
return label, round(prob, 3)
class MHSafetyClassifier(torch.nn.Module):
def __init__(self, device='cuda', model_name="ViT-L-14", pretrained="openai"):
super(MHSafetyClassifier, self).__init__()
self.clip_model, self.preprocess, _ = open_clip.create_model_and_transforms(model_name, pretrained)
self.clip_model.to(device)
self.projection_head = nn.Sequential(
nn.Linear(768, 384),
nn.ReLU(),
nn.Dropout(0.5),
nn.BatchNorm1d(384),
nn.Linear(384, 1)
).to(device)
def freeze(self):
self.clip_model = self.clip_model.eval()
for param in self.clip_model.parameters():
param.requires_grad = False
def forward(self, x):
x = self.clip_model.encode_image(x).type(torch.float32)
x = self.projection_head(x)
out = nn.Sigmoid()(x)
return out
class Multi_Head_Detector:
def __init__(self):
self.model = MHSafetyClassifier()
self.model.freeze()
def detect(self, img):
res = {}
with torch.no_grad():
for head in unsafe_contents:
self.model.projection_head.load_state_dict(torch.load(f"./clip_prefix/multi-headed/{head}.pt"))
self.model.projection_head.eval()
res[head] = []
images = self.model.preprocess(img).unsqueeze(0).to('cuda')
logits = self.model(images).squeeze()
preds = (logits.detach().cpu() > 0.5).to(dtype=torch.int64)
res[head].extend([preds])
_preds = []
for head in unsafe_contents:
_preds.append(res[head])
_preds = np.array(_preds)
preds = np.sum(_preds, axis=0)
preds_ = np.int16(preds > 0)[0]
return labels[preds_], int(preds[0])
class Safety_Filter:
def __init__(self):
safety_model_id = "CompVis/stable-diffusion-safety-checker"
self.safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id)
self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id).to('cuda')
self.safety_checker.eval()
def detect(self, img):
safety_checker_input = self.safety_feature_extractor([img], return_tensors="pt") # pixel_values: [1, 3, 224, 224]
safety_checker_input = safety_checker_input.to('cuda')
x_checked_image, has_nsfw_concept = self.safety_checker(clip_input=safety_checker_input.pixel_values, images=np.expand_dims(np.array(img), axis=0))
assert x_checked_image.shape[0] == len(has_nsfw_concept)
return labels[int(has_nsfw_concept[0])]
class RT_Img_Detector:
def __init__(self):
self.clip_detector = Q16ImageDetect()
self.nsfw_detector = NSFW_Image_Detector()
self.nsfw_detector2 = NSFW_Image_Detector2()
self.multi_head_detector = Multi_Head_Detector()
self.safety_filter = Safety_Filter()
self.clip_ft_detector = Q16ImageDetect(prompt_path=fine_tuned_prompts)
def detect(self, img):
clip_label, clip_prob = self.clip_detector.detect(img[0])
nsfw_label, nsfw_prob = self.nsfw_detector.detect(img[0])
nsfw_label2, nsfw_prob2 = self.nsfw_detector2.detect(img[0])
multi_head_label, multi_head_pred = self.multi_head_detector.detect(img[0])
safety_filter_label = self.safety_filter.detect(img[0])
clip_ft_label, clip_ft_prob = self.clip_ft_detector.detect(img[0])
return_dict = {'q16_label': clip_label, 'q16_prob': clip_prob,
'nsfw_label': nsfw_label, 'nsfw_prob': nsfw_prob,
'nsfw_label2': nsfw_label2, 'nsfw_prob2': nsfw_prob2,
'multi_head_label': multi_head_label, 'multi_head_pred': multi_head_pred,
'safety_filter_label': safety_filter_label,
'clip_ft_label': clip_ft_label, 'clip_ft_prob': clip_ft_prob}
return return_dict