-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimplex.py
571 lines (493 loc) · 17.8 KB
/
simplex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
# Copyright (c) 2012 Eliot Eshelman
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
###############################################################################
"""2D, 3D and 4D Simplex Noise functions return 'random' values in (-1, 1).
This algorithm was originally designed by Ken Perlin, but my code has been
adapted from the implementation written by Stefan Gustavson (stegu@itn.liu.se)
Raw Simplex noise functions return the value generated by Ken's algorithm.
Scaled Raw Simplex noise functions adjust the range of values returned from the
traditional (-1, 1) to whichever bounds are passed to the function.
Multi-Octave Simplex noise functions compine multiple noise values to create a
more complex result. Each successive layer of noise is adjusted and scaled.
Scaled Multi-Octave Simplex noise functions scale the values returned from the
traditional (-1,1) range to whichever range is passed to the function.
In many cases, you may think you only need a 1D noise function, but in practice
2D is almost always better. For instance, if you're using the current frame
number as the parameter for the noise, all objects will end up with the same
noise value at each frame. By adding a second parameter on the second
dimension, you can ensure that each gets a unique noise value and they don't
all look identical.
"""
import math
import random
class Simplex(object):
def __init__(self, seed):
random.seed(seed)
perm = range(256)
random.shuffle(perm)
"""Permutation table. The same list is repeated twice."""
self.perm = perm + perm
def octave_noise_2d(self, octaves, persistence, scale, x, y):
"""2D Multi-Octave Simplex noise.
For each octave, a higher frequency/lower amplitude function will be added
to the original. The higher the persistence [0-1], the more of each
succeeding octave will be added.
"""
total = 0.0
frequency = scale
amplitude = 1.0
# We have to keep track of the largest possible amplitude,
# because each octave adds more, and we need a value in [-1, 1].
maxAmplitude = 0.0;
for i in range(octaves):
total += self.raw_noise_2d(x * frequency, y * frequency) * amplitude
frequency *= 2.0
maxAmplitude += amplitude;
amplitude *= persistence
return total / maxAmplitude
@staticmethod
def octave_noise_3d(octaves, persistence, scale, x, y, z):
"""3D Multi-Octave Simplex noise.
For each octave, a higher frequency/lower amplitude function will be added
to the original. The higher the persistence [0-1], the more of each
succeeding octave will be added.
"""
total = 0.0
frequency = scale
amplitude = 1.0
# We have to keep track of the largest possible amplitude,
# because each octave adds more, and we need a value in [-1, 1].
maxAmplitude = 0.0;
for i in range(octaves):
total += Simplex.raw_noise_3d( x * frequency,
y * frequency,
z * frequency) * amplitude
frequency *= 2.0
maxAmplitude += amplitude;
amplitude *= persistence
return total / maxAmplitude
@staticmethod
def octave_noise_4d(octaves, persistence, scale, x, y, z, w):
"""4D Multi-Octave Simplex noise.
For each octave, a higher frequency/lower amplitude function will be added
to the original. The higher the persistence [0-1], the more of each
succeeding octave will be added.
"""
total = 0.0
frequency = scale
amplitude = 1.0
# We have to keep track of the largest possible amplitude,
# because each octave adds more, and we need a value in [-1, 1].
maxAmplitude = 0.0;
for i in range(octaves):
total += Simplex.raw_noise_4d( x * frequency,
y * frequency,
z * frequency,
w * frequency) * amplitude
frequency *= 2.0
maxAmplitude += amplitude;
amplitude *= persistence
return total / maxAmplitude
@staticmethod
def scaled_octave_noise_2d(octaves, persistence, scale, loBound, hiBound, x, y):
"""2D Scaled Multi-Octave Simplex noise.
Returned value will be between loBound and hiBound.
"""
return (Simplex.octave_noise_2d(octaves, persistence, scale, x, y) *
(hiBound - loBound) / 2 +
(hiBound + loBound) / 2)
@staticmethod
def scaled_octave_noise_3d(octaves, persistence, scale, loBound, hiBound, x, y, z):
"""3D Scaled Multi-Octave Simplex noise.
Returned value will be between loBound and hiBound.
"""
return (Simplex.octave_noise_3d(octaves, persistence, scale, x, y, z) *
(hiBound - loBound) / 2 +
(hiBound + loBound) / 2)
@staticmethod
def scaled_octave_noise_4d(octaves, persistence, scale, loBound, hiBound, x, y, z, w):
"""4D Scaled Multi-Octave Simplex noise.
Returned value will be between loBound and hiBound.
"""
return (Simplex.octave_noise_4d(octaves, persistence, scale, x, y, z, w) *
(hiBound - loBound) / 2 +
(hiBound + loBound) / 2)
@staticmethod
def scaled_raw_noise_2d(loBound, hiBound, x, y):
"""2D Scaled Raw Simplex noise.
Returned value will be between loBound and hiBound.
"""
return (Simplex.raw_noise_2d(x, y) *
(hiBound - loBound) / 2+
(hiBound + loBound) / 2)
@staticmethod
def scaled_raw_noise_3d(loBound, hiBound, x, y, z):
"""3D Scaled Raw Simplex noise.
Returned value will be between loBound and hiBound.
"""
return (Simplex.raw_noise_3d(x, y, z) *
(hiBound - loBound) / 2+
(hiBound + loBound) / 2)
@staticmethod
def scaled_raw_noise_4d(loBound, hiBound, x, y, z, w):
"""4D Scaled Raw Simplex noise.
Returned value will be between loBound and hiBound.
"""
return (Simplex.raw_noise_4d(x, y, z, w) *
(hiBound - loBound) / 2+
(hiBound + loBound) / 2)
def raw_noise_2d(self, x, y):
"""2D Raw Simplex noise."""
# Noise contributions from the three corners
n0, n1, n2 = 0.0, 0.0, 0.0
# Skew the input space to determine which simplex cell we're in
F2 = 0.5 * (math.sqrt(3.0) - 1.0)
# Hairy skew factor for 2D
s = (x + y) * F2
i = Simplex.fastfloor(x + s)
j = Simplex.fastfloor(y + s)
G2 = (3.0 - math.sqrt(3.0)) / 6.0
t = float(i + j) * G2
# Unskew the cell origin back to (x,y) space
X0 = i - t
Y0 = j - t
# The x,y distances from the cell origin
x0 = x - X0
y0 = y - Y0
# For the 2D case, the simplex shape is an equilateral triangle.
# Determine which simplex we are in.
i1, j1 = 0, 0 # Offsets for second (middle) corner of simplex in (i,j) coords
if x0 > y0: # lower triangle, XY order: (0,0)->(1,0)->(1,1)
i1 = 1
j1 = 0
else: # upper triangle, YX order: (0,0)->(0,1)->(1,1)
i1 = 0
j1 = 1
# A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
# a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
# c = (3-sqrt(3))/6
x1 = x0 - i1 + G2 # Offsets for middle corner in (x,y) unskewed coords
y1 = y0 - j1 + G2
x2 = x0 - 1.0 + 2.0 * G2 # Offsets for last corner in (x,y) unskewed coords
y2 = y0 - 1.0 + 2.0 * G2
# Work out the hashed gradient indices of the three simplex corners
ii = int(i) & 255
jj = int(j) & 255
gi0 = self.perm[ii+self.perm[jj]] % 12
gi1 = self.perm[ii+i1+self.perm[jj+j1]] % 12
gi2 = self.perm[ii+1+self.perm[jj+1]] % 12
# Calculate the contribution from the three corners
t0 = 0.5 - x0*x0 - y0*y0
if t0 < 0:
n0 = 0.0
else:
t0 *= t0
n0 = t0 * t0 * Simplex.dot2d(Simplex._grad3[gi0], x0, y0)
t1 = 0.5 - x1*x1 - y1*y1
if t1 < 0:
n1 = 0.0
else:
t1 *= t1
n1 = t1 * t1 * Simplex.dot2d(Simplex._grad3[gi1], x1, y1)
t2 = 0.5 - x2*x2-y2*y2
if t2 < 0:
n2 = 0.0
else:
t2 *= t2
n2 = t2 * t2 * Simplex.dot2d(Simplex._grad3[gi2], x2, y2)
# Add contributions from each corner to get the final noise value.
# The result is scaled to return values in the interval [-1,1].
return 70.0 * (n0 + n1 + n2)
def raw_noise_3d(self, x, y, z):
"""3D Raw Simplex noise."""
# Noise contributions from the four corners
n0, n1, n2, n3 = 0.0, 0.0, 0.0, 0.0
# Skew the input space to determine which simplex cell we're in
F3 = 1.0/3.0
# Very nice and simple skew factor for 3D
s = (x+y+z) * F3
i = int(x + s)
j = int(y + s)
k = int(z + s)
G3 = 1.0 / 6.0
t = float(i+j+k) * G3
# Unskew the cell origin back to (x,y,z) space
X0 = i - t
Y0 = j - t
Z0 = k - t
# The x,y,z distances from the cell origin
x0 = x - X0
y0 = y - Y0
z0 = z - Z0
# For the 3D case, the simplex shape is a slightly irregular tetrahedron.
# Determine which simplex we are in.
i1, j1, k1 = 0,0,0 # Offsets for second corner of simplex in (i,j,k) coords
i2, j2, k2 = 0,0,0 # Offsets for third corner of simplex in (i,j,k) coords
if x0 >= y0:
if y0 >= z0: # X Y Z order
i1 = 1
j1 = 0
k1 = 0
i2 = 1
j2 = 1
k2 = 0
elif x0 >= z0: # X Z Y order
i1 = 1
j1 = 0
k1 = 0
i2 = 1
j2 = 0
k2 = 1
else: # Z X Y order
i1 = 0
j1 = 0
k1 = 1
i2 = 1
j2 = 0
k2 = 1
else:
if y0 < z0: # Z Y X order
i1 = 0
j1 = 0
k1 = 1
i2 = 0
j2 = 1
k2 = 1
elif x0 < z0: # Y Z X order
i1 = 0
j1 = 1
k1 = 0
i2 = 0
j2 = 1
k2 = 1
else: # Y X Z order
i1 = 0
j1 = 1
k1 = 0
i2 = 1
j2 = 1
k2 = 0
# A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
# a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
# a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
# c = 1/6.
x1 = x0 - i1 + G3 # Offsets for second corner in (x,y,z) coords
y1 = y0 - j1 + G3
z1 = z0 - k1 + G3
x2 = x0 - i2 + 2.0*G3 # Offsets for third corner in (x,y,z) coords
y2 = y0 - j2 + 2.0*G3
z2 = z0 - k2 + 2.0*G3
x3 = x0 - 1.0 + 3.0*G3 # Offsets for last corner in (x,y,z) coords
y3 = y0 - 1.0 + 3.0*G3
z3 = z0 - 1.0 + 3.0*G3
# Work out the hashed gradient indices of the four simplex corners
ii = int(i) & 255
jj = int(j) & 255
kk = int(k) & 255
gi0 = self.perm[ii+self.perm[jj+self.perm[kk]]] % 12
gi1 = self.perm[ii+i1+self.perm[jj+j1+self.perm[kk+k1]]] % 12
gi2 = self.perm[ii+i2+self.perm[jj+j2+self.perm[kk+k2]]] % 12
gi3 = self.perm[ii+1+self.perm[jj+1+self.perm[kk+1]]] % 12
# Calculate the contribution from the four corners
t0 = 0.6 - x0*x0 - y0*y0 - z0*z0
if t0 < 0:
n0 = 0.0
else:
t0 *= t0
n0 = t0 * t0 * Simplex.dot3d(Simplex._grad3[gi0], x0, y0, z0)
t1 = 0.6 - x1*x1 - y1*y1 - z1*z1
if t1 < 0:
n1 = 0.0
else:
t1 *= t1
n1 = t1 * t1 * Simplex.dot3d(Simplex._grad3[gi1], x1, y1, z1)
t2 = 0.6 - x2*x2 - y2*y2 - z2*z2
if t2 < 0:
n2 = 0.0
else:
t2 *= t2
n2 = t2 * t2 * Simplex.dot3d(Simplex._grad3[gi2], x2, y2, z2)
t3 = 0.6 - x3*x3 - y3*y3 - z3*z3
if t3 < 0:
n3 = 0.0
else:
t3 *= t3
n3 = t3 * t3 * Simplex.dot3d(Simplex._grad3[gi3], x3, y3, z3)
# Add contributions from each corner to get the final noise value.
# The result is scaled to stay just inside [-1,1]
return 32.0 * (n0 + n1 + n2 + n3)
def raw_noise_4d(self, x, y, z, w):
"""4D Raw Simplex noise."""
# Noise contributions from the five corners
n0, n1, n2, n3, n4 = 0.0, 0.0, 0.0, 0.0, 0.0
# The skewing and unskewing factors are hairy again for the 4D case
F4 = (math.sqrt(5.0)-1.0) / 4.0
# Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
s = (x + y + z + w) * F4
i = int(x + s)
j = int(y + s)
k = int(z + s)
l = int(w + s)
G4 = (5.0-math.sqrt(5.0)) / 20.0
t = (i + j + k + l) * G4
# Unskew the cell origin back to (x,y,z,w) space
X0 = i - t
Y0 = j - t
Z0 = k - t
W0 = l - t
# The x,y,z,w distances from the cell origin
x0 = x - X0
y0 = y - Y0
z0 = z - Z0
w0 = w - W0
# For the 4D case, the simplex is a 4D shape I won't even try to describe.
# To find out which of the 24 possible simplices we're in, we need to
# determine the magnitude ordering of x0, y0, z0 and w0.
# The method below is a good way of finding the ordering of x,y,z,w and
# then find the correct traversal order for the simplex we're in.
# First, six pair-wise comparisons are performed between each possible pair
# of the four coordinates, and the results are used to add up binary bits
# for an integer index.
c1 = 32 if x0 > y0 else 0
c2 = 16 if x0 > z0 else 0
c3 = 8 if y0 > z0 else 0
c4 = 4 if x0 > w0 else 0
c5 = 2 if y0 > w0 else 0
c6 = 1 if z0 > w0 else 0
c = c1 + c2 + c3 + c4 + c5 + c6
i1, j1, k1, l1 = 0,0,0,0 # The integer offsets for the second simplex corner
i2, j2, k2, l2 = 0,0,0,0 # The integer offsets for the third simplex corner
i3, j3, k3, l3 = 0,0,0,0 # The integer offsets for the fourth simplex corner
# simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
# Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
# impossible. Only the 24 indices which have non-zero entries make any sense.
# We use a thresholding to set the coordinates in turn from the largest magnitude.
# The number 3 in the "simplex" array is at the position of the largest coordinate.
i1 = 1 if Simplex._simplex[c][0] >= 3 else 0
j1 = 1 if Simplex._simplex[c][1] >= 3 else 0
k1 = 1 if Simplex._simplex[c][2] >= 3 else 0
l1 = 1 if Simplex._simplex[c][3] >= 3 else 0
# The number 2 in the "simplex" array is at the second largest coordinate.
i2 = 1 if Simplex._simplex[c][0] >= 2 else 0
j2 = 1 if Simplex._simplex[c][1] >= 2 else 0
k2 = 1 if Simplex._simplex[c][2] >= 2 else 0
l2 = 1 if Simplex._simplex[c][3] >= 2 else 0
# The number 1 in the "simplex" array is at the second smallest coordinate.
i3 = 1 if Simplex._simplex[c][0] >= 1 else 0
j3 = 1 if Simplex._simplex[c][1] >= 1 else 0
k3 = 1 if Simplex._simplex[c][2] >= 1 else 0
l3 = 1 if Simplex._simplex[c][3] >= 1 else 0
# The fifth corner has all coordinate offsets = 1, so no need to look that up.
x1 = x0 - i1 + G4 # Offsets for second corner in (x,y,z,w) coords
y1 = y0 - j1 + G4
z1 = z0 - k1 + G4
w1 = w0 - l1 + G4
x2 = x0 - i2 + 2.0*G4 # Offsets for third corner in (x,y,z,w) coords
y2 = y0 - j2 + 2.0*G4
z2 = z0 - k2 + 2.0*G4
w2 = w0 - l2 + 2.0*G4
x3 = x0 - i3 + 3.0*G4 # Offsets for fourth corner in (x,y,z,w) coords
y3 = y0 - j3 + 3.0*G4
z3 = z0 - k3 + 3.0*G4
w3 = w0 - l3 + 3.0*G4
x4 = x0 - 1.0 + 4.0*G4 # Offsets for last corner in (x,y,z,w) coords
y4 = y0 - 1.0 + 4.0*G4
z4 = z0 - 1.0 + 4.0*G4
w4 = w0 - 1.0 + 4.0*G4
# Work out the hashed gradient indices of the five simplex corners
ii = int(i) & 255
jj = int(j) & 255
kk = int(k) & 255
ll = int(l) & 255
gi0 = self.perm[ii+self.perm[jj+self.perm[kk+self.perm[ll]]]] % 32
gi1 = self.perm[ii+i1+self.perm[jj+j1+self.perm[kk+k1+self.perm[ll+l1]]]] % 32
gi2 = self.perm[ii+i2+self.perm[jj+j2+self.perm[kk+k2+self.perm[ll+l2]]]] % 32
gi3 = self.perm[ii+i3+self.perm[jj+j3+self.perm[kk+k3+self.perm[ll+l3]]]] % 32
gi4 = self.perm[ii+1+self.perm[jj+1+self.perm[kk+1+self.perm[ll+1]]]] % 32
# Calculate the contribution from the five corners
t0 = 0.6 - x0*x0 - y0*y0 - z0*z0 - w0*w0
if t0 < 0:
n0 = 0.0
else:
t0 *= t0
n0 = t0 * t0 * Simplex.dot4d(Simplex._grad4[gi0], x0, y0, z0, w0)
t1 = 0.6 - x1*x1 - y1*y1 - z1*z1 - w1*w1
if t1 < 0:
n1 = 0.0
else:
t1 *= t1
n1 = t1 * t1 * Simplex.dot4d(Simplex._grad4[gi1], x1, y1, z1, w1)
t2 = 0.6 - x2*x2 - y2*y2 - z2*z2 - w2*w2
if t2 < 0:
n2 = 0.0
else:
t2 *= t2
n2 = t2 * t2 * Simplex.dot4d(Simplex._grad4[gi2], x2, y2, z2, w2)
t3 = 0.6 - x3*x3 - y3*y3 - z3*z3 - w3*w3
if t3 < 0:
n3 = 0.0
else:
t3 *= t3
n3 = t3 * t3 * Simplex.dot4d(Simplex._grad4[gi3], x3, y3, z3, w3)
t4 = 0.6 - x4*x4 - y4*y4 - z4*z4 - w4*w4
if t4 < 0:
n4 = 0.0
else:
t4 *= t4
n4 = t4 * t4 * Simplex.dot4d(Simplex._grad4[gi4], x4, y4, z4, w4)
# Sum up and scale the result to cover the range [-1,1]
return 27.0 * (n0 + n1 + n2 + n3 + n4)
@staticmethod
def dot2d(g, x, y):
return g[0]*x + g[1]*y
@staticmethod
def dot3d(g, x, y, z):
return g[0]*x + g[1]*y + g[2]*z
@staticmethod
def dot4d(g, x, y, z, w):
return g[0]*x + g[1]*y + g[2]*z + g[3]*w
"""The gradients are the midpoints of the vertices of a cube."""
_grad3 = [
[1,1,0], [-1,1,0], [1,-1,0], [-1,-1,0],
[1,0,1], [-1,0,1], [1,0,-1], [-1,0,-1],
[0,1,1], [0,-1,1], [0,1,-1], [0,-1,-1]
]
"""The gradients are the midpoints of the vertices of a cube."""
_grad4 = [
[0,1,1,1], [0,1,1,-1], [0,1,-1,1], [0,1,-1,-1],
[0,-1,1,1], [0,-1,1,-1], [0,-1,-1,1], [0,-1,-1,-1],
[1,0,1,1], [1,0,1,-1], [1,0,-1,1], [1,0,-1,-1],
[-1,0,1,1], [-1,0,1,-1], [-1,0,-1,1], [-1,0,-1,-1],
[1,1,0,1], [1,1,0,-1], [1,-1,0,1], [1,-1,0,-1],
[-1,1,0,1], [-1,1,0,-1], [-1,-1,0,1], [-1,-1,0,-1],
[1,1,1,0], [1,1,-1,0], [1,-1,1,0], [1,-1,-1,0],
[-1,1,1,0], [-1,1,-1,0], [-1,-1,1,0], [-1,-1,-1,0]
]
"""A lookup table to traverse the simplex around a given point in 4D."""
_simplex = [
[0,1,2,3],[0,1,3,2],[0,0,0,0],[0,2,3,1],[0,0,0,0],[0,0,0,0],[0,0,0,0],[1,2,3,0],
[0,2,1,3],[0,0,0,0],[0,3,1,2],[0,3,2,1],[0,0,0,0],[0,0,0,0],[0,0,0,0],[1,3,2,0],
[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],
[1,2,0,3],[0,0,0,0],[1,3,0,2],[0,0,0,0],[0,0,0,0],[0,0,0,0],[2,3,0,1],[2,3,1,0],
[1,0,2,3],[1,0,3,2],[0,0,0,0],[0,0,0,0],[0,0,0,0],[2,0,3,1],[0,0,0,0],[2,1,3,0],
[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],
[2,0,1,3],[0,0,0,0],[0,0,0,0],[0,0,0,0],[3,0,1,2],[3,0,2,1],[0,0,0,0],[3,1,2,0],
[2,1,0,3],[0,0,0,0],[0,0,0,0],[0,0,0,0],[3,1,0,2],[0,0,0,0],[3,2,0,1],[3,2,1,0]
]
@staticmethod
def fastfloor(n):
if(n < 0):
return int(n - 1)
return int(n)