-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper_functions.py
451 lines (366 loc) · 15.8 KB
/
helper_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
### My functions + those of others that I've found useful for ML projects.
import tensorflow as tf
#my functions
def compare_results(results_1: dict, results_2: dict) -> None:
"""
Compares the results of two different models and returns which one performed better
for each scoring metric.
Uses the results from the calculate_results() function.
"""
import inspect
def retrieve_name(var):
callers_local_vars = inspect.currentframe().f_back.f_back.f_locals.items()
return [var_name for var_name, var_val in callers_local_vars if var_val is var][1]
for metric in results_1.keys():
if results_1[metric] > results_2[metric]:
print(f"{metric.capitalize()}: {retrieve_name(results_1)} > {retrieve_name(results_2)}")
else:
print(f"{metric.capitalize()}: {retrieve_name(results_2)} > {retrieve_name(results_1)}")
def save_word_embeddings(vocab_words, embedding_weights, vector_filename="vectors.tsv",
metadata_filename="metadata.tsv"):
"""
Used to save word embeddings to disk. Can view with Tensorflow embedding projector
https://projector.tensorflow.org/
vocab_words should be something like:
vocab_wordds = text_vectorizer.get_vocabulary()
Embedding weights should be something like:
embedding_weights = model_1.get_layer("embedding_1").get_weights()[0]
"""
import io
# got this from here: https://www.tensorflow.org/tutorials/text/word_embeddings#retrieve_the_trained_word_embeddings_and_save_them_to_disk
out_v = io.open(vector_filename, 'w', encoding='utf-8')
out_m = io.open(metadata_filename, 'w', encoding='utf-8')
for index, word in enumerate(vocab_words):
if index == 0:
continue # skip 0, it's padding.
vec = embedding_weights[index]
out_v.write('\t'.join([str(x) for x in vec]) + "\n")
out_m.write(word + "\n")
out_v.close()
out_m.close()
## functions from others
# Create a function to import an image and resize it to be able to be used with our model
def load_and_prep_image(filename, img_shape=224, scale=True):
"""
Reads in an image from filename, turns it into a tensor and reshapes into
(224, 224, 3).
Parameters
----------
filename (str): string filename of target image
img_shape (int): size to resize target image to, default 224
scale (bool): whether to scale pixel values to range(0, 1), default True
"""
# Read in the image
img = tf.io.read_file(filename)
# Decode it into a tensor
img = tf.image.decode_jpeg(img)
# Resize the image
img = tf.image.resize(img, [img_shape, img_shape])
if scale:
# Rescale the image (get all values between 0 and 1)
return img/255.
else:
return img
# Note: The following confusion matrix code is a remix of Scikit-Learn's
# plot_confusion_matrix function - https://scikit-learn.org/stable/modules/generated/sklearn.metrics.plot_confusion_matrix.html
import itertools
import matplotlib.pyplot as plt
import numpy as np
from sklearn.metrics import confusion_matrix
# Our function needs a different name to sklearn's plot_confusion_matrix
def make_confusion_matrix(y_true, y_pred, classes=None, figsize=(10, 10), text_size=15, norm=False, savefig=False):
"""Makes a labelled confusion matrix comparing predictions and ground truth labels.
If classes is passed, confusion matrix will be labelled, if not, integer class values
will be used.
Args:
y_true: Array of truth labels (must be same shape as y_pred).
y_pred: Array of predicted labels (must be same shape as y_true).
classes: Array of class labels (e.g. string form). If `None`, integer labels are used.
figsize: Size of output figure (default=(10, 10)).
text_size: Size of output figure text (default=15).
norm: normalize values or not (default=False).
savefig: save confusion matrix to file (default=False).
Returns:
A labelled confusion matrix plot comparing y_true and y_pred.
Example usage:
make_confusion_matrix(y_true=test_labels, # ground truth test labels
y_pred=y_preds, # predicted labels
classes=class_names, # array of class label names
figsize=(15, 15),
text_size=10)
"""
# Create the confustion matrix
cm = confusion_matrix(y_true, y_pred)
cm_norm = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] # normalize it
n_classes = cm.shape[0] # find the number of classes we're dealing with
# Plot the figure and make it pretty
fig, ax = plt.subplots(figsize=figsize)
cax = ax.matshow(cm, cmap=plt.cm.Blues) # colors will represent how 'correct' a class is, darker == better
fig.colorbar(cax)
# Are there a list of classes?
if classes:
labels = classes
else:
labels = np.arange(cm.shape[0])
# Label the axes
ax.set(title="Confusion Matrix",
xlabel="Predicted label",
ylabel="True label",
xticks=np.arange(n_classes), # create enough axis slots for each class
yticks=np.arange(n_classes),
xticklabels=labels, # axes will labeled with class names (if they exist) or ints
yticklabels=labels)
# Make x-axis labels appear on bottom
ax.xaxis.set_label_position("bottom")
ax.xaxis.tick_bottom()
# Set the threshold for different colors
threshold = (cm.max() + cm.min()) / 2.
# Plot the text on each cell
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
if norm:
plt.text(j, i, f"{cm[i, j]} ({cm_norm[i, j]*100:.1f}%)",
horizontalalignment="center",
color="white" if cm[i, j] > threshold else "black",
size=text_size)
else:
plt.text(j, i, f"{cm[i, j]}",
horizontalalignment="center",
color="white" if cm[i, j] > threshold else "black",
size=text_size)
# Save the figure to the current working directory
if savefig:
fig.savefig("confusion_matrix.png")
# Make a function to predict on images and plot them (works with multi-class)
def pred_and_plot(model, filename, class_names):
"""
Imports an image located at filename, makes a prediction on it with
a trained model and plots the image with the predicted class as the title.
"""
# Import the target image and preprocess it
img = load_and_prep_image(filename)
# Make a prediction
pred = model.predict(tf.expand_dims(img, axis=0))
# Get the predicted class
if len(pred[0]) > 1: # check for multi-class
pred_class = class_names[pred.argmax()] # if more than one output, take the max
else:
pred_class = class_names[int(tf.round(pred)[0][0])] # if only one output, round
# Plot the image and predicted class
plt.imshow(img)
plt.title(f"Prediction: {pred_class}")
plt.axis(False)
import datetime
def create_tensorboard_callback(dir_name, experiment_name):
"""
Creates a TensorBoard callback instand to store log files.
Stores log files with the filepath:
"dir_name/experiment_name/current_datetime/"
Args:
dir_name: target directory to store TensorBoard log files
experiment_name: name of experiment directory (e.g. efficientnet_model_1)
"""
log_dir = dir_name + "/" + experiment_name + "/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(
log_dir=log_dir
)
print(f"Saving TensorBoard log files to: {log_dir}")
return tensorboard_callback
# Plot the validation and training data separately
import matplotlib.pyplot as plt
def plot_loss_curves(history):
"""
Returns separate loss curves for training and validation metrics.
Args:
history: TensorFlow model History object (see: https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/History)
"""
loss = history.history['loss']
val_loss = history.history['val_loss']
accuracy = history.history['accuracy']
val_accuracy = history.history['val_accuracy']
epochs = range(len(history.history['loss']))
# Plot loss
plt.plot(epochs, loss, label='training_loss')
plt.plot(epochs, val_loss, label='val_loss')
plt.title('Loss')
plt.xlabel('Epochs')
plt.legend()
# Plot accuracy
plt.figure()
plt.plot(epochs, accuracy, label='training_accuracy')
plt.plot(epochs, val_accuracy, label='val_accuracy')
plt.title('Accuracy')
plt.xlabel('Epochs')
plt.legend()
def compare_histories(original_history, new_history, initial_epochs=5):
"""
Compares two TensorFlow model History objects.
Args:
original_history: History object from original model (before new_history)
new_history: History object from continued model training (after original_history)
initial_epochs: Number of epochs in original_history (new_history plot starts from here)
"""
# Get original history measurements
acc = original_history.history["accuracy"]
loss = original_history.history["loss"]
val_acc = original_history.history["val_accuracy"]
val_loss = original_history.history["val_loss"]
# Combine original history with new history
total_acc = acc + new_history.history["accuracy"]
total_loss = loss + new_history.history["loss"]
total_val_acc = val_acc + new_history.history["val_accuracy"]
total_val_loss = val_loss + new_history.history["val_loss"]
# Make plots
plt.figure(figsize=(8, 8))
plt.subplot(2, 1, 1)
plt.plot(total_acc, label='Training Accuracy')
plt.plot(total_val_acc, label='Validation Accuracy')
plt.plot([initial_epochs-1, initial_epochs-1],
plt.ylim(), label='Start Fine Tuning') # reshift plot around epochs
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(2, 1, 2)
plt.plot(total_loss, label='Training Loss')
plt.plot(total_val_loss, label='Validation Loss')
plt.plot([initial_epochs-1, initial_epochs-1],
plt.ylim(), label='Start Fine Tuning') # reshift plot around epochs
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.xlabel('epoch')
plt.show()
# Create function to unzip a zipfile into current working directory
# (since we're going to be downloading and unzipping a few files)
import zipfile
def unzip_data(filename):
"""
Unzips filename into the current working directory.
Args:
filename (str): a filepath to a target zip folder to be unzipped.
"""
zip_ref = zipfile.ZipFile(filename, "r")
zip_ref.extractall()
zip_ref.close()
# Walk through an image classification directory and find out how many files (images)
# are in each subdirectory.
import os
def walk_through_dir(dir_path):
"""
Walks through dir_path returning its contents.
Args:
dir_path (str): target directory
Returns:
A print out of:
number of subdiretories in dir_path
number of images (files) in each subdirectory
name of each subdirectory
"""
for dirpath, dirnames, filenames in os.walk(dir_path):
print(f"There are {len(dirnames)} directories and {len(filenames)} images in '{dirpath}'.")
# Function to evaluate: accuracy, precision, recall, f1-score
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
def calculate_results(y_true, y_pred):
"""
Calculates model accuracy, precision, recall and f1 score of a binary classification model.
Args:
y_true: true labels in the form of a 1D array
y_pred: predicted labels in the form of a 1D array
Returns a dictionary of accuracy, precision, recall, f1-score.
"""
# Calculate model accuracy
model_accuracy = accuracy_score(y_true, y_pred)
# Calculate model precision, recall and f1 score using "weighted average
model_precision, model_recall, model_f1, _ = precision_recall_fscore_support(y_true, y_pred, average="weighted")
model_results = {"accuracy": model_accuracy*100,
"precision": model_precision*100,
"recall": model_recall*100,
"f1": model_f1*100}
return model_results
# Create a function which uses a list of trained models to make and return a list of predictions
def get_ensemble_preds(ensemble_models, data):
ensemble_preds = []
for model in ensemble_models:
preds = model.predict(data)
ensemble_preds.append(preds)
return tf.constant(tf.squeeze(ensemble_preds))
# Find upper and lower bounds of ensemble predictions
def get_lower_upper_from_ensemble_preds(preds):
"""Get the upper and lower bounds for ensemble preds
Args:
preds (_type_): _description_
Returns:
_type_: _description_
"""
# 1. Measure the standard deviation of the predictions
std = tf.math.reduce_std(preds, axis=0)
# 2. Multiply the standard deviation by 1.96
interval = 1.96 * std
# 3. Get the prediction interval upper and lower bounds
preds_mean = tf.reduce_mean(preds, axis=0)
lower, upper = preds_mean - interval, preds_mean + interval
return lower, upper
# MASE implementation
def mean_absolute_scaled_error(y_true, y_pred):
"""
Implement MASE (assuming no seasonality of data).
"""
mae = tf.reduce_mean(tf.abs(y_true-y_pred))
# Find MAE of naive forecast (no seasonality)
mae_naive_no_season = tf.reduce_mean(tf.abs(y_true[1:] - y_true[:-1])) # our seasonality is 1 day (hence the shift of 1)
return mae / mae_naive_no_season
def evaluate_preds(y_true, y_pred):
"""
Evaluates predictions made using a tensorflow model
"""
# Make sure float32 datatype (for metric calculations)
y_true = tf.cast(y_true, dtype=tf.float32)
y_pred = tf.cast(y_pred, dtype=tf.float32)
# Calculate various evaluation metrics
mae = tf.keras.metrics.mean_absolute_error(y_true, y_pred)
mse = tf.keras.metrics.mean_squared_error(y_true, y_pred)
rmse = tf.sqrt(mse)
mape = tf.keras.metrics.mean_absolute_percentage_error(y_true, y_pred)
mase = mean_absolute_scaled_error(y_true, y_pred)
# Account for different sized metrics (for longer horizons, we want to reduce metrics to a single value)
if mae.ndim > 0:
mae = tf.reduce_mean(mae)
mse = tf.reduce_mean(mse)
rmse = tf.reduce_mean(rmse)
mape = tf.reduce_mean(mape)
mase = tf.reduce_mean(mase)
return {"mae": mae.numpy(),
"mse": mse.numpy(),
"rmse": rmse.numpy(),
"mape": mape.numpy(),
"mase": mase.numpy()}
def calculate_results(y_true, y_pred):
"""
Calculates model accuracy, precision, recall and f1 score of a binary classification model.
Args:
y_true: true labels in the form of a 1D array
y_pred: predicted labels in the form of a 1D array
Returns a dictionary of accuracy, precision, recall, f1-score.
"""
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
# Calculate model accuracy
model_accuracy = accuracy_score(y_true, y_pred)
# Calculate model precision, recall and f1 score using "weighted average
model_precision, model_recall, model_f1, _ = precision_recall_fscore_support(y_true, y_pred, average="weighted")
model_results = {"accuracy": model_accuracy*100,
"precision": model_precision*100,
"recall": model_recall*100,
"f1": model_f1*100}
return model_results
def compare_results(results_1: dict, results_2: dict) -> None:
"""
Compares the results of two different models and returns which one performed better
for each scoring metric.
Uses the results from the calculate_results() function.
"""
import inspect
def retrieve_name(var):
callers_local_vars = inspect.currentframe().f_back.f_back.f_locals.items()
return [var_name for var_name, var_val in callers_local_vars if var_val is var][1]
for metric in results_1.keys():
if results_1[metric] > results_2[metric]:
print(f"{metric.capitalize()}: {retrieve_name(results_1)} > {retrieve_name(results_2)}")
else:
print(f"{metric.capitalize()}: {retrieve_name(results_2)} > {retrieve_name(results_1)}")