forked from indrops/indrops
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindrops.py
executable file
·1779 lines (1448 loc) · 85.2 KB
/
indrops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os, subprocess
import itertools
import operator
from collections import defaultdict, OrderedDict
import errno
# cPickle is a faster version of pickle that isn't installed in python3
# inserted try statement just in case
try:
import cPickle as pickle
except:
import pickle
from io import BytesIO
import numpy as np
import re
import shutil
import gzip
# product: product(A, B) returns the same as ((x,y) for x in A for y in B).
# combination: Return r length subsequences of elements from the input iterable.
from itertools import product, combinations
import time
import yaml
import tempfile
import string
from contextlib import contextmanager
# -----------------------
#
# Helper functions
#
# -----------------------
def string_hamming_distance(str1, str2):
"""
Fast hamming distance over 2 strings known to be of same length.
In information theory, the Hamming distance between two strings of equal
length is the number of positions at which the corresponding symbols
are different.
eg "karolin" and "kathrin" is 3.
"""
return sum(itertools.imap(operator.ne, str1, str2))
___tbl = {'A':'T', 'T':'A', 'C':'G', 'G':'C', 'N':'N'}
def rev_comp(seq):
return ''.join(___tbl[s] for s in seq[::-1])
def to_fastq(name, seq, qual):
"""
Return string that can be written to fastQ file
"""
return '@'+name+'\n'+seq+'\n+\n'+qual+'\n'
def to_fastq_lines(bc, umi, seq, qual, read_name=''):
"""
Return string that can be written to fastQ file
"""
reformated_name = read_name.replace(':', '_')
name = '%s:%s:%s' % (bc, umi, reformated_name)
return to_fastq(name, seq, qual)
def from_fastq(handle):
while True:
name = next(handle).rstrip()[1:] #Read name
seq = next(handle).rstrip() #Read seq
next(handle) #+ line
qual = next(handle).rstrip() #Read qual
if not name or not seq or not qual:
break
yield name, seq, qual
def seq_neighborhood(seq, n_subs=1):
"""
Given a sequence, yield all sequences within n_subs substitutions of
that sequence by looping through each combination of base pairs within
each combination of positions.
"""
for positions in combinations(range(len(seq)), n_subs):
# yields all unique combinations of indices for n_subs mutations
for subs in product(*("ATGCN",)*n_subs):
# yields all combinations of possible nucleotides for strings of length
# n_subs
seq_copy = list(seq)
for p, s in zip(positions, subs):
seq_copy[p] = s
yield ''.join(seq_copy)
def build_barcode_neighborhoods(barcode_file, expect_reverse_complement=True):
"""
Given a set of barcodes, produce sequences which can unambiguously be
mapped to these barcodes, within 2 substitutions. If a sequence maps to
multiple barcodes, get rid of it. However, if a sequences maps to a bc1 with
1change and another with 2changes, keep the 1change mapping.
"""
# contains all mutants that map uniquely to a barcode
clean_mapping = dict()
# contain single or double mutants
mapping1 = defaultdict(set)
mapping2 = defaultdict(set)
#Build the full neighborhood and iterate through barcodes
with open(barcode_file, 'rU') as f:
# iterate through each barcode (rstrip cleans string of whitespace)
for line in f:
barcode = line.rstrip()
if expect_reverse_complement:
barcode = rev_comp(line.rstrip())
# each barcode obviously maps to itself uniquely
clean_mapping[barcode] = barcode
# for each possible mutated form of a given barcode, either add
# the origin barcode into the set corresponding to that mutant or
# create a new entry for a mutant not already in mapping1
# eg: barcodes CATG and CCTG would be in the set for mutant CTTG
# but only barcode CATG could generate mutant CANG
for n in seq_neighborhood(barcode, 1):
mapping1[n].add(barcode)
# same as above but with double mutants
for n in seq_neighborhood(barcode, 2):
mapping2[n].add(barcode)
# take all single-mutants and find those that could only have come from one
# specific barcode
for k, v in mapping1.items():
if k not in clean_mapping:
if len(v) == 1:
clean_mapping[k] = list(v)[0]
for k, v in mapping2.items():
if k not in clean_mapping:
if len(v) == 1:
clean_mapping[k] = list(v)[0]
del mapping1
del mapping2
return clean_mapping
def check_dir(path):
"""
Checks if directory already exists or not and creates it if it doesn't
"""
try:
os.makedirs(path)
except OSError as exception:
if exception.errno != errno.EEXIST:
raise
def print_to_stderr(msg, newline=True):
"""
Wrapper to eventually write to stderr
"""
sys.stderr.write(str(msg))
if newline:
sys.stderr.write('\n')
def worker_filter(iterable, worker_index, total_workers):
return (p for i,p in enumerate(iterable) if (i-worker_index)%total_workers==0)
class FIFO():
"""
A context manager for a named pipe.
"""
def __init__(self, filename="", suffix="", prefix="tmp_fifo_dir", dir=None):
if filename:
self.filename = filename
else:
self.tmpdir = tempfile.mkdtemp(suffix=suffix, prefix=prefix, dir=dir)
self.filename = os.path.join(self.tmpdir, 'fifo')
def __enter__(self):
if os.path.exists(self.filename):
os.unlink(self.filename)
os.mkfifo(self.filename)
return self
def __exit__(self, type, value, traceback):
os.remove(self.filename)
if hasattr(self, 'tmpdir'):
shutil.rmtree(self.tmpdir)
# -----------------------
#
# Core objects
#
# -----------------------
class IndropsProject():
def __init__(self, project_yaml_file_handle, read_only=False):
self.yaml = yaml.full_load(project_yaml_file_handle)
self.name = self.yaml['project_name']
self.project_dir = self.yaml['project_dir']
self.libraries = OrderedDict()
self.runs = OrderedDict()
self.read_only = read_only
for run in self.yaml['sequencing_runs']:
"""
After filtering, each sequencing run generates between 1 ... X files with filtered reads.
X = (N x M)
- N: The run is often split into several files (a typical NextSeq run is split into L001,
L002, L003, L004 which match different lanes, but this can also be done artificially.
- M: The same run might contain several libraries. The demultiplexing can be handled by the script (or externally).
If demultiplexing is done externally, there will be a different .fastq file for each library.
"""
version = run['version']
filtered_filename = '{library_name}_{run_name}'
if run['version'] == 'v3':
filtered_filename += '_{library_index}'
# Prepare to iterate over run split into several files
if 'split_affixes' in run:
filtered_filename += '_{split_affix}'
split_affixes = run['split_affixes']
else:
split_affixes = ['']
filtered_filename += '.fastq'
# Prepare to iterate over libraries
if 'libraries' in run:
run_libraries = run['libraries']
elif 'library_name' in run:
run_libraries = [{'library_name' : run['library_name'], 'library_prefix':''}]
else:
raise Exception('No library name or libraries specified.')
if run['version']=='v1' or run['version']=='v2':
for affix in split_affixes:
for lib in run_libraries:
lib_name = lib['library_name']
if lib_name not in self.libraries:
self.libraries[lib_name] = IndropsLibrary(name=lib_name, project=self, version=run['version'])
else:
assert self.libraries[lib_name].version == run['version']
if version == 'v1':
metaread_filename = os.path.join(run['dir'],run['fastq_path'].format(split_affix=affix, read='R1', library_prefix=lib['library_prefix']))
bioread_filename = os.path.join(run['dir'],run['fastq_path'].format(split_affix=affix, read='R2', library_prefix=lib['library_prefix']))
elif version == 'v2':
metaread_filename = os.path.join(run['dir'],run['fastq_path'].format(split_affix=affix, read='R2', library_prefix=lib['library_prefix']))
bioread_filename = os.path.join(run['dir'],run['fastq_path'].format(split_affix=affix, read='R1', library_prefix=lib['library_prefix']))
filtered_part_filename = filtered_filename.format(run_name=run['name'], split_affix=affix, library_name=lib_name)
filtered_part_path = os.path.join(self.project_dir, lib_name, 'filtered_parts', filtered_part_filename)
part = V1V2Filtering(filtered_fastq_filename=filtered_part_path,
project=self,
bioread_filename=bioread_filename,
metaread_filename=metaread_filename,
run_name=run['name'],
library_name=lib_name,
part_name=affix)
if run['name'] not in self.runs:
self.runs[run['name']] = []
self.runs[run['name']].append(part)
self.libraries[lib_name].parts.append(part)
elif run['version'] == 'v3' or run['version'] == 'v3-miseq':
for affix in split_affixes:
filtered_part_filename = filtered_filename.format(run_name=run['name'], split_affix=affix,
library_name='{library_name}', library_index='{library_index}')
part_filename = os.path.join(self.project_dir, '{library_name}', 'filtered_parts', filtered_part_filename)
input_filename = os.path.join(run['dir'], run['fastq_path'].format(split_affix=affix, read='{read}'))
part = V3Demultiplexer(run['libraries'], project=self, part_filename=part_filename, input_filename=input_filename, run_name=run['name'], part_name=affix,
run_version_details=run['version'])
if run['name'] not in self.runs:
self.runs[run['name']] = []
self.runs[run['name']].append(part)
for lib in run_libraries:
lib_name = lib['library_name']
lib_index = lib['library_index']
if lib_name not in self.libraries:
self.libraries[lib_name] = IndropsLibrary(name=lib_name, project=self, version=run['version'])
self.libraries[lib_name].parts.append(part.libraries[lib_index])
@property
def paths(self):
if not hasattr(self, '_paths'):
script_dir = os.path.dirname(os.path.realpath(__file__))
#Read defaults
with open(os.path.join(script_dir, 'default_parameters.yaml'), 'r') as f:
paths = yaml.full_load(f)['paths']
# Update with user provided values
paths.update(self.yaml['paths'])
paths['python'] = os.path.join(paths['python_dir'], 'python')
paths['java'] = os.path.join(paths['java_dir'], 'java')
paths['bowtie'] = os.path.join(paths['bowtie_dir'], 'bowtie')
paths['samtools'] = os.path.join(paths['samtools_dir'], 'samtools')
paths['trimmomatic_jar'] = os.path.join(script_dir, 'bins', 'trimmomatic-0.33.jar')
paths['rsem_tbam2gbam'] = os.path.join(paths['rsem_dir'], 'rsem-tbam2gbam')
paths['rsem_prepare_reference'] = os.path.join(paths['rsem_dir'], 'rsem-prepare-reference')
self._paths = type('Paths_anonymous_object',(object,),paths)()
self._paths.trim_polyA_and_filter_low_complexity_reads_py = os.path.join(script_dir, 'trim_polyA_and_filter_low_complexity_reads.py')
self._paths.quantify_umifm_from_alignments_py = os.path.join(script_dir, 'quantify_umifm_from_alignments.py')
self._paths.count_barcode_distribution_py = os.path.join(script_dir, 'count_barcode_distribution.py')
self._paths.gel_barcode1_list = os.path.join(script_dir, 'ref/barcode_lists/gel_barcode1_list.txt')
self._paths.gel_barcode2_list = os.path.join(script_dir, 'ref/barcode_lists/gel_barcode2_list.txt')
return self._paths
@property
def parameters(self):
if not hasattr(self, '_parameters'):
#Read defaults
with open(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'default_parameters.yaml'), 'r') as f:
self._parameters = yaml.full_load(f)['parameters']
# Update with user provided values
if 'parameters' in self.yaml:
for k, d in self.yaml['parameters'].items():
self._parameters[k].update(d)
return self._parameters
@property
def gel_barcode1_revcomp_list_neighborhood(self):
if not hasattr(self, '_gel_barcode1_list_neighborhood'):
self._gel_barcode1_revcomp_list_neighborhood = build_barcode_neighborhoods(self.paths.gel_barcode1_list, True)
return self._gel_barcode1_revcomp_list_neighborhood
@property
def gel_barcode2_revcomp_list_neighborhood(self):
if not hasattr(self, '_gel_barcode2_revcomp_list_neighborhood'):
self._gel_barcode2_revcomp_list_neighborhood = build_barcode_neighborhoods(self.paths.gel_barcode2_list, True)
return self._gel_barcode2_revcomp_list_neighborhood
@property
def gel_barcode2_list_neighborhood(self):
if not hasattr(self, '_gel_barcode2_list_neighborhood'):
self._gel_barcode2_list_neighborhood = build_barcode_neighborhoods(self.paths.gel_barcode2_list, False)
return self._gel_barcode2_list_neighborhood
@property
def stable_barcode_names(self):
if not hasattr(self, '_stable_barcode_names'):
with open(self.paths.gel_barcode1_list) as f:
rev_bc1s = [rev_comp(line.rstrip()) for line in f]
with open(self.paths.gel_barcode2_list) as f:
bc2s = [line.rstrip() for line in f]
rev_bc2s = [rev_comp(bc2) for bc2 in bc2s]
# V1, V2 names:
v1v2_names = {}
barcode_iter = product(rev_bc1s, rev_bc2s)
name_iter = product(string.ascii_uppercase, repeat=4)
for barcode, name in zip(barcode_iter, name_iter):
v1v2_names['-'.join(barcode)] = 'bc' + ''.join(name)
# V3 names:
v3_names = {}
barcode_iter = product(bc2s, rev_bc2s)
name_iter = product(string.ascii_uppercase, repeat=4)
for barcode, name in zip(barcode_iter, name_iter):
v3_names['-'.join(barcode)] = 'bc' + ''.join(name)
self._stable_barcode_names = {
'v1' : v1v2_names,
'v2' : v1v2_names,
'v3': v3_names,
'v3-miseq':v3_names,
}
return self._stable_barcode_names
def project_check_dir(self, path):
if not self.read_only:
check_dir(path)
def filter_gtf(self, gzipped_transcriptome_gtf, gtf_with_genenames_in_transcript_id):
# A small number of gene are flagged as having two different biotypes.
gene_biotype_dict = defaultdict(set)
# Read through GTF file once to get all gene names
for line in subprocess.Popen(["gzip", "--stdout", "-d", gzipped_transcriptome_gtf], stdout=subprocess.PIPE).stdout:
# Skip non-gene feature lines.
if '\tgene\t' not in line:
continue
gene_biotype_match = re.search(r'gene_biotype \"(.*?)\";', line)
gene_name_match = re.search(r'gene_name \"(.*?)\";', line)
if gene_name_match and gene_biotype_match:
gene_name = gene_name_match.group(1)
gene_biotype = gene_biotype_match.group(1)
# Record biotype.
gene_biotype_dict[gene_name].add(gene_biotype)
# Detect read-through genes by name. Name must be a fusion of two other gene names 'G1-G2'.
readthrough_genes = set()
for gene in gene_biotype_dict.keys():
if '-' in gene and len(gene.split('-')) == 2:
g1, g2 = gene.split('-')
if g1 in gene_biotype_dict and g2 in gene_biotype_dict:
readthrough_genes.add(gene)
# Detect pseudogenes: genes where all associated biotypes have 'pseudogene' in name
pseudogenes = set()
for gene, biotypes in gene_biotype_dict.items():
if all('pseudogene' in b for b in biotypes):
pseudogenes.add(gene)
all_genes = set(gene_biotype_dict.keys())
valid_genes = all_genes.difference(pseudogenes).difference(readthrough_genes)
transcripts_counter = defaultdict(int)
# Go through GTF file again, annotating each transcript_id with the gene and outputting to a new GTF file.
output_gtf = open(gtf_with_genenames_in_transcript_id, 'w')
for line in subprocess.Popen(["gzip", "--stdout", "-d", gzipped_transcriptome_gtf], stdout=subprocess.PIPE).stdout:
# Skip non-transcript feature lines.
if 'transcript_id' not in line:
continue
gene_name_match = re.search(r'gene_name \"(.*?)\";', line)
if gene_name_match:
gene_name = gene_name_match.group(1)
if gene_name in valid_genes:
# An unusual edgecase in the GTF for Danio Rerio rel89
if ' ' in gene_name:
gene_name = gene_name.replace(' ', '_')
out_line = re.sub(r'(?<=transcript_id ")(.*?)(?=";)', r'\1|'+gene_name, line)
output_gtf.write(out_line)
if '\ttranscript\t' in line:
transcripts_counter['valid'] += 1
elif gene_name in pseudogenes and '\ttranscript\t' in line:
transcripts_counter['pseudogenes'] += 1
elif gene_name in readthrough_genes and '\ttranscript\t' in line:
transcripts_counter['readthrough_genes'] += 1
output_gtf.close()
print_to_stderr('Filtered GTF contains %d transcripts (%d genes)' % (transcripts_counter['valid'], len(valid_genes)))
print_to_stderr(' - ignored %d transcripts from %d pseudogenes)' % (transcripts_counter['pseudogenes'], len(pseudogenes)))
print_to_stderr(' - ignored %d read-through transcripts (%d genes)' % (transcripts_counter['readthrough_genes'], len(readthrough_genes)))
def build_transcriptome(self, gzipped_genome_softmasked_fasta_filename, gzipped_transcriptome_gtf,
mode='strict'):
import pyfasta
index_dir = os.path.dirname(self.paths.bowtie_index)
self.project_check_dir(index_dir)
genome_filename = os.path.join(index_dir, '.'.join(gzipped_genome_softmasked_fasta_filename.split('.')[:-1]))
gtf_filename = os.path.join(index_dir, gzipped_transcriptome_gtf.split('/')[-1])
gtf_prefix = '.'.join(gtf_filename.split('.')[:-2])
# gtf_with_genenames_in_transcript_id = gtf_prefix + '.annotated.gtf'
gtf_with_genenames_in_transcript_id = self.paths.bowtie_index + '.gtf'
print_to_stderr('Filtering GTF')
self.filter_gtf(gzipped_transcriptome_gtf, gtf_with_genenames_in_transcript_id)
# accepted_gene_biotypes_for_NA_transcripts = set(["protein_coding","IG_V_gene","IG_J_gene","TR_J_gene","TR_D_gene","TR_V_gene","IG_C_gene","IG_D_gene","TR_C_gene"])
# tsl1_or_tsl2_strings = ['transcript_support_level "1"', 'transcript_support_level "1 ', 'transcript_support_level "2"', 'transcript_support_level "2 ']
# tsl_NA = 'transcript_support_level "NA'
# def filter_ensembl_transcript(transcript_line):
# line_valid_for_output = False
# if mode == 'strict':
# for string in tsl1_or_tsl2_strings:
# if string in line:
# line_valid_for_output = True
# break
# if tsl_NA in line:
# gene_biotype = re.search(r'gene_biotype \"(.*?)\";', line)
# if gene_biotype and gene_biotype.group(1) in accepted_gene_biotypes_for_NA_transcripts:
# line_valid_for_output = True
# return line_valid_for_output
# elif mode == 'all_ensembl':
# line_valid_for_output = True
# return line_valid_for_output
# print_to_stderr('Filtering GTF')
# output_gtf = open(gtf_with_genenames_in_transcript_id, 'w')
# for line in subprocess.Popen(["gzip", "--stdout", "-d", gzipped_transcriptome_gtf], stdout=subprocess.PIPE).stdout:
# if 'transcript_id' not in line:
# continue
# if filter_ensembl_transcript(line):
# gene_name = re.search(r'gene_name \"(.*?)\";', line)
# if gene_name:
# gene_name = gene_name.group(1)
# out_line = re.sub(r'(?<=transcript_id ")(.*?)(?=";)', r'\1|'+gene_name, line)
# output_gtf.write(out_line)
# output_gtf.close()
print_to_stderr('Gunzipping Genome')
p_gzip = subprocess.Popen(["gzip", "-dfc", gzipped_genome_softmasked_fasta_filename], stdout=open(genome_filename, 'wb'))
if p_gzip.wait() != 0:
raise Exception(" Error in rsem-prepare reference ")
p_rsem = subprocess.Popen([self.paths.rsem_prepare_reference, '--bowtie', '--bowtie-path', self.paths.bowtie_dir,
'--gtf', gtf_with_genenames_in_transcript_id,
'--polyA', '--polyA-length', '5', genome_filename, self.paths.bowtie_index])
if p_rsem.wait() != 0:
raise Exception(" Error in rsem-prepare reference ")
print_to_stderr('Finding soft masked regions in transcriptome')
transcripts_fasta = pyfasta.Fasta(self.paths.bowtie_index + '.transcripts.fa')
soft_mask = {}
for tx, seq in transcripts_fasta.items():
seq = str(seq)
soft_mask[tx] = set((m.start(), m.end()) for m in re.finditer(r'[atcgn]+', seq))
with open(self.paths.bowtie_index + '.soft_masked_regions.pickle', 'w') as out:
pickle.dump(soft_mask, out)
class IndropsLibrary():
def __init__(self, name='', project=None, version=''):
self.project = project
self.name = name
self.parts = []
self.version = version
self.paths = {}
for lib_dir in ['filtered_parts', 'quant_dir']:
dir_path = os.path.join(self.project.project_dir, self.name, lib_dir)
self.project.project_check_dir(dir_path)
self.paths[lib_dir] = dir_path
self.paths = type('Paths_anonymous_object',(object,),self.paths)()
self.paths.abundant_barcodes_names_filename = os.path.join(self.project.project_dir, self.name, 'abundant_barcodes.pickle')
self.paths.filtering_statistics_filename = os.path.join(self.project.project_dir, self.name, self.name+'.filtering_stats.csv')
self.paths.barcode_abundance_histogram_filename = os.path.join(self.project.project_dir, self.name, self.name+'.barcode_abundance.png')
self.paths.barcode_abundance_by_barcode_filename = os.path.join(self.project.project_dir, self.name, self.name+'.barcode_abundance_by_barcode.png')
self.paths.missing_quants_filename = os.path.join(self.project.project_dir, self.name, self.name+'.missing_barcodes.pickle')
@property
def barcode_counts(self):
if not hasattr(self, '_barcode_counts'):
self._barcode_counts = defaultdict(int)
for part in self.parts:
for k, v in part.part_barcode_counts.items():
self._barcode_counts[k] += v
return self._barcode_counts
@property
def abundant_barcodes(self):
if not hasattr(self, '_abundant_barcodes'):
with open(self.paths.abundant_barcodes_names_filename) as f:
self._abundant_barcodes = pickle.load(f)
return self._abundant_barcodes
def sorted_barcode_names(self, min_reads=0, max_reads=10**10):
return [name for bc,(name,abun) in sorted(self.abundant_barcodes.items(), key=lambda i:-i[1][1]) if (abun>min_reads) & (abun<max_reads)]
def identify_abundant_barcodes(self, make_histogram=True, absolute_min_reads=250):
"""
Identify which barcodes are above the absolute minimal abundance,
and make a histogram summarizing the barcode distribution
"""
keep_barcodes = []
for k, v in self.barcode_counts.items():
if v > absolute_min_reads:
keep_barcodes.append(k)
abundant_barcodes = {}
print_to_stderr(" %d barcodes above absolute minimum threshold" % len(keep_barcodes))
for bc in keep_barcodes:
abundant_barcodes[bc] = (self.project.stable_barcode_names[self.version][bc], self.barcode_counts[bc])
self._abundant_barcodes = abundant_barcodes
with open(self.paths.abundant_barcodes_names_filename, 'w') as f:
pickle.dump(abundant_barcodes, f)
# Create table about the filtering process
with open(self.paths.filtering_statistics_filename, 'w') as filtering_stats:
header = ['Run', 'Part', 'Input Reads', 'Valid Structure', 'Surviving Trimmomatic', 'Surviving polyA trim and complexity filter']
if self.version == 'v1' or self.version == 'v2':
structure_parts = ['W1_in_R2', 'empty_read', 'No_W1', 'No_polyT', 'BC1', 'BC2', 'Umi_error']
header += ['W1 in R2', 'empty read', 'No W1 in R1', 'No polyT', 'BC1', 'BC2', 'UMI_contains_N']
elif self.version == 'v3' or self.version == 'v3-miseq':
structure_parts = ['Invalid_BC1', 'Invalid_BC2', 'UMI_contains_N']
header += ['Invalid BC1', 'Invalid BC2', 'UMI_contains_N']
trimmomatic_parts = ['dropped']
header += ['Dropped by Trimmomatic']
complexity_filter_parts = ['rejected_because_too_short', 'rejected_because_complexity_too_low']
header += ['Too short after polyA trim', 'Read complexity too low']
filtering_stats.write(','.join(header)+'\n')
for part in self.parts:
with open(part.filtering_metrics_filename) as f:
part_stats = yaml.full_load(f)
line = [part.run_name, part.part_name, part_stats['read_structure']['Total'], part_stats['read_structure']['Valid'], part_stats['trimmomatic']['output'], part_stats['complexity_filter']['output']]
line += [part_stats['read_structure'][k] if k in part_stats['read_structure'] else 0 for k in structure_parts]
line += [part_stats['trimmomatic'][k] if k in part_stats['trimmomatic'] else 0 for k in trimmomatic_parts]
line += [part_stats['complexity_filter'][k] if k in part_stats['complexity_filter'] else 0 for k in complexity_filter_parts]
line = [str(l) for l in line]
filtering_stats.write(','.join(line)+'\n')
print_to_stderr("Created Library filtering summary:")
print_to_stderr(" " + self.paths.filtering_statistics_filename)
# Make the histogram figure
if not make_histogram:
return
count_freq = defaultdict(int)
for bc, count in self.barcode_counts.items():
count_freq[count] += 1
x = np.array(count_freq.keys())
y = np.array(count_freq.values())
w = x*y
# need to use non-intenactive Agg backend
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
ax.hist(x, bins=np.logspace(0, 6, 50), weights=w, color='green')
ax.set_xscale('log')
ax.set_xlabel('Reads per barcode')
ax.set_ylabel('#reads coming from bin')
fig.savefig(self.paths.barcode_abundance_histogram_filename)
print_to_stderr("Created Barcode Abundance Histogram at:")
print_to_stderr(" " + self.paths.barcode_abundance_histogram_filename)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.hist(list(self.barcode_counts.values()), bins=np.logspace(2, 6, 50), color='green')
ax.set_xlim((1, 10**6))
ax.set_xscale('log')
ax.set_xlabel('Reads per barcode')
ax.set_ylabel('# of barcodes')
fig.savefig(self.paths.barcode_abundance_by_barcode_filename)
print_to_stderr("Created Barcode Abundance Histogram by barcodes at:")
print_to_stderr(" " + self.paths.barcode_abundance_by_barcode_filename)
def sort_reads_by_barcode(self, index=0):
self.parts[index].sort_reads_by_barcode(self.abundant_barcodes)
def get_reads_for_barcode(self, barcode, run_filter=[]):
for part in self.parts:
if (not run_filter) or (part.run_name in run_filter):
for line in part.get_reads_for_barcode(barcode):
yield line
def output_barcode_fastq(self, analysis_prefix='', min_reads=750, max_reads=10**10, total_workers=1, worker_index=0, run_filter=[]):
if analysis_prefix:
analysis_prefix = analysis_prefix + '.'
output_dir_path = os.path.join(self.project.project_dir, self.name, 'barcode_fastq')
self.project.project_check_dir(output_dir_path)
sorted_barcode_names = self.sorted_barcode_names(min_reads=min_reads, max_reads=max_reads)
# Identify which barcodes belong to this worker
barcodes_for_this_worker = []
i = worker_index
while i < len(sorted_barcode_names):
barcodes_for_this_worker.append(sorted_barcode_names[i])
i += total_workers
print_to_stderr("""[%s] This worker assigned %d out of %d total barcodes.""" % (self.name, len(barcodes_for_this_worker), len(sorted_barcode_names)))
for barcode in barcodes_for_this_worker:
barcode_fastq_filename = analysis_prefix+'%s.%s.fastq' % (self.name, barcode)
print_to_stderr(" "+barcode_fastq_filename)
with open(os.path.join(output_dir_path, barcode_fastq_filename), 'w') as f:
for line in self.get_reads_for_barcode(barcode, run_filter):
f.write(line)
def quantify_expression(self, analysis_prefix='', max_reads=10**10, min_reads=750, min_counts=0, total_workers=1, worker_index=0, no_bam=False, run_filter=[]):
if analysis_prefix:
analysis_prefix = analysis_prefix + '.'
sorted_barcode_names = self.sorted_barcode_names(min_reads=min_reads, max_reads=max_reads)
#print_to_stderr(" min_reads: %d sorted_barcode_names counts: %d" % (min_reads, len(sorted_barcode_names)))
# Identify which barcodes belong to this worker
barcodes_for_this_worker = []
i = worker_index
while i < len(sorted_barcode_names):
barcodes_for_this_worker.append(sorted_barcode_names[i])
i += total_workers
counts_output_filename = os.path.join(self.paths.quant_dir, '%sworker%d_%d.counts.tsv' % (analysis_prefix, worker_index, total_workers))
ambig_counts_output_filename = os.path.join(self.paths.quant_dir, '%sworker%d_%d.ambig.counts.tsv' % (analysis_prefix, worker_index, total_workers))
ambig_partners_output_filename = os.path.join(self.paths.quant_dir, '%sworker%d_%d.ambig.partners' % (analysis_prefix, worker_index, total_workers))
metrics_output_filename = os.path.join(self.paths.quant_dir, '%sworker%d_%d.metrics.tsv' % (analysis_prefix, worker_index, total_workers))
ignored_for_output_filename = counts_output_filename+'.ignored'
merged_bam_filename = os.path.join(self.paths.quant_dir, '%sworker%d_%d.bam'% (analysis_prefix, worker_index, total_workers))
merged_bam_index_filename = merged_bam_filename + '.bai'
get_barcode_genomic_bam_filename = lambda bc: os.path.join(self.paths.quant_dir, '%s%s.genomic.sorted.bam' % (analysis_prefix, bc))
# If we wanted BAM output, and the merge BAM and merged BAM index are present, then we are done
if (not no_bam) and (os.path.isfile(merged_bam_filename) and os.path.isfile(merged_bam_index_filename)):
print_to_stderr('Indexed, merged BAM file detected for this worker. Done.')
return
# Otherwise, we have to check what we need to quantify
"""
Function to determine which barcodes this quantification worker might have already quantified.
This tries to handle interruption during any step of the process.
The worker is assigned some list of barcodes L. For every barcode:
- It could have been quantified
- but have less than min_counts ---> so it got written to `ignored` file.
- and quantification succeeded, meaning
1. there is a line (ending in \n) in the `metrics` file.
2. there is a line (ending in \n) in the `quantification` file.
3. there (could) be a line (ending in \n) in the `ambiguous quantification` file.
4. there (could) be a line (ending in \n) in the `ambiguous quantification partners` file.
[If any line doesn't end in \n, then likely the output of that line was interrupted!]
5. (If BAM output is desired) There should be a sorted genomic BAM
6. (If BAM output is desired) There should be a sorted genomic BAM index
"""
succesfully_previously_quantified = set()
previously_ignored = set()
header_written = False
if os.path.isfile(counts_output_filename) and os.path.isfile(metrics_output_filename):
# Load in list of ignored barcodes
if os.path.isfile(ignored_for_output_filename):
with open(ignored_for_output_filename, 'r') as f:
previously_ignored = set([line.rstrip().split('\t')[0] for line in f])
# Load the metrics data into memory
# (It should be fairly small, this is fast and safe)
existing_metrics_data = {}
with open(metrics_output_filename, 'r') as f:
existing_metrics_data = dict((line.partition('\t')[0], line) for line in f if line[-1]=='\n')
# Quantification data could be large, read it line by line and output it back for barcodes that have a matching metrics line.
with open(counts_output_filename, 'r') as in_counts, \
open(counts_output_filename+'.tmp', 'w') as tmp_counts, \
open(metrics_output_filename+'.tmp', 'w') as tmp_metrics:
for line in in_counts:
# The first worker is reponsible for written the header.
# Make sure we carry that over
if (not header_written) and (worker_index==0):
tmp_counts.write(line)
tmp_metrics.write(existing_metrics_data['Barcode'])
header_written = True
continue
# This line has incomplete output, skip it.
# (This can only happen with the last line)
if line[-1] != '\n':
continue
barcode = line.partition('\t')[0]
# Skip barcode if we don't have existing metrics data
if barcode not in existing_metrics_data:
continue
# Check if we BAM required BAM files exist
barcode_genomic_bam_filename = get_barcode_genomic_bam_filename(barcode)
bam_files_required_and_present = no_bam or (os.path.isfile(barcode_genomic_bam_filename) and os.path.isfile(barcode_genomic_bam_filename+'.bai'))
if not bam_files_required_and_present:
continue
# This passed all the required checks, write the line to the temporary output files
tmp_counts.write(line)
tmp_metrics.write(existing_metrics_data[barcode])
succesfully_previously_quantified.add(barcode)
shutil.move(counts_output_filename+'.tmp', counts_output_filename)
shutil.move(metrics_output_filename+'.tmp', metrics_output_filename)
# For any 'already quantified' barcode, make sure we also copy over the ambiguity data
with open(ambig_counts_output_filename, 'r') as in_f, \
open(ambig_counts_output_filename+'.tmp', 'w') as tmp_f:
f_first_line = (worker_index == 0)
for line in in_f:
if f_first_line:
tmp_f.write(line)
f_first_line = False
continue
if (line.partition('\t')[0] in succesfully_previously_quantified) and (line[-1]=='\n'):
tmp_f.write(line)
shutil.move(ambig_counts_output_filename+'.tmp', ambig_counts_output_filename)
with open(ambig_partners_output_filename, 'r') as in_f, \
open(ambig_partners_output_filename+'.tmp', 'w') as tmp_f:
for line in in_f:
if (line.partition('\t')[0] in succesfully_previously_quantified) and (line[-1]=='\n'):
tmp_f.write(line)
shutil.move(ambig_partners_output_filename+'.tmp', ambig_partners_output_filename)
barcodes_to_quantify = [bc for bc in barcodes_for_this_worker if (bc not in succesfully_previously_quantified and bc not in previously_ignored)]
print_to_stderr("""[%s] This worker assigned %d out of %d total barcodes.""" % (self.name, len(barcodes_for_this_worker), len(sorted_barcode_names)))
if len(barcodes_for_this_worker)-len(barcodes_to_quantify) > 0:
print_to_stderr(""" %d previously quantified, %d previously ignored, %d left for this run.""" % (len(succesfully_previously_quantified), len(previously_ignored), len(barcodes_to_quantify)))
print_to_stderr(('{0:<14.12}'.format('Prefix') if analysis_prefix else '') + '{0:<14.12}{1:<9}'.format("Library", "Barcode"), False)
print_to_stderr("{0:<8s}{1:<8s}{2:<10s}".format("Reads", "Counts", "Ambigs"))
for barcode in barcodes_to_quantify:
self.quantify_expression_for_barcode(barcode,
counts_output_filename, metrics_output_filename,
ambig_counts_output_filename, ambig_partners_output_filename,
no_bam=no_bam, write_header=(not header_written) and (worker_index==0), analysis_prefix=analysis_prefix,
min_counts = min_counts, run_filter=run_filter)
header_written = True
print_to_stderr("Per barcode quantification completed.")
if no_bam:
return
#Gather list of barcodes with output from the metrics file
genomic_bams = []
with open(metrics_output_filename, 'r') as f:
for line in f:
bc = line.partition('\t')[0]
if bc == 'Barcode': #This is the line in the header
continue
genomic_bams.append(get_barcode_genomic_bam_filename(bc))
print_to_stderr("Merging BAM output.")
try:
subprocess.check_output([self.project.paths.samtools, 'merge', '-f', merged_bam_filename]+genomic_bams, stderr=subprocess.STDOUT)
except subprocess.CalledProcessError, err:
print_to_stderr(" CMD: %s" % str(err.cmd)[:400])
print_to_stderr(" stdout/stderr:")
print_to_stderr(err.output)
raise Exception(" === Error in samtools merge === ")
print_to_stderr("Indexing merged BAM output.")
try:
subprocess.check_output([self.project.paths.samtools, 'index', merged_bam_filename], stderr=subprocess.STDOUT)
except subprocess.CalledProcessError, err:
print_to_stderr(" CMD: %s" % str(err.cmd)[:400])
print_to_stderr(" stdout/stderr:")
print_to_stderr(err.output)
raise Exception(" === Error in samtools index === ")
for filename in genomic_bams:
os.remove(filename)
os.remove(filename + '.bai')
def quantify_expression_for_barcode(self, barcode, counts_output_filename, metrics_output_filename,
ambig_counts_output_filename, ambig_partners_output_filename,
min_counts=0, analysis_prefix='', no_bam=False, write_header=False, run_filter=[]):
print_to_stderr(('{0:<14.12}'.format(analysis_prefix) if analysis_prefix else '') + '{0:<14.12}{1:<9}'.format(self.name, barcode), False)
unaligned_reads_output = os.path.join(self.paths.quant_dir, '%s%s.unaligned.fastq' % (analysis_prefix,barcode))
aligned_bam = os.path.join(self.paths.quant_dir, '%s%s.aligned.bam' % (analysis_prefix,barcode))
# Bowtie command
bowtie_cmd = [self.project.paths.bowtie, self.project.paths.bowtie_index, '-q', '-',
'-p', '1', '-a', '--best', '--strata', '--chunkmbs', '1000', '--norc', '--sam',
'-shmem', #should sometimes reduce memory usage...?
'-m', str(self.project.parameters['bowtie_arguments']['m']),
'-n', str(self.project.parameters['bowtie_arguments']['n']),
'-l', str(self.project.parameters['bowtie_arguments']['l']),
'-e', str(self.project.parameters['bowtie_arguments']['e']),
]
if self.project.parameters['output_arguments']['output_unaligned_reads_to_other_fastq']:
bowtie_cmd += ['--un', unaligned_reads_output]
# Quantification command
script_dir = os.path.dirname(os.path.realpath(__file__))
quant_cmd = [self.project.paths.python, self.project.paths.quantify_umifm_from_alignments_py,
'-m', str(self.project.parameters['umi_quantification_arguments']['m']),
'-u', str(self.project.parameters['umi_quantification_arguments']['u']),
'-d', str(self.project.parameters['umi_quantification_arguments']['d']),
'--min_non_polyA', str(self.project.parameters['umi_quantification_arguments']['min_non_polyA']),
'--library', str(self.name),
'--barcode', str(barcode),
'--counts', counts_output_filename,
'--metrics', metrics_output_filename,
'--ambigs', ambig_counts_output_filename,
'--ambig-partners', ambig_partners_output_filename,
'--min-counts', str(min_counts),
]
if not no_bam:
quant_cmd += ['--bam', aligned_bam]
if write_header:
quant_cmd += ['--write-header']
if self.project.parameters['umi_quantification_arguments']['split-ambigs']:
quant_cmd.append('--split-ambig')
if self.project.parameters['output_arguments']['filter_alignments_to_softmasked_regions']:
quant_cmd += ['--soft-masked-regions', self.project.paths.bowtie_index + '.soft_masked_regions.pickle']
# Spawn processes
p1 = subprocess.Popen(bowtie_cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
p2 = subprocess.Popen(quant_cmd, stdin=p1.stdout, stderr=subprocess.PIPE)
for line in self.get_reads_for_barcode(barcode, run_filter=run_filter):
try:
p1.stdin.write(line)
except IOError as e:
print_to_stderr('\n')
print_to_stderr(p1.stderr.read())
raise Exception('\n === Error on piping data to bowtie ===')
p1.stdin.close()
if p1.wait() != 0:
print_to_stderr('\n')
print_to_stderr(p1.stderr.read())
raise Exception('\n === Error on bowtie ===')
if p2.wait() != 0:
print_to_stderr(p2.stderr.read())
raise Exception('\n === Error on Quantification Script ===')
print_to_stderr(p2.stderr.read(), False)
if no_bam:
# We are done here
return False
if not os.path.isfile(aligned_bam):
raise Exception("\n === No aligned bam was output for barcode %s ===" % barcode)
genomic_bam = os.path.join(self.paths.quant_dir, '%s%s.genomic.bam' % (analysis_prefix,barcode))
sorted_bam = os.path.join(self.paths.quant_dir, '%s%s.genomic.sorted.bam' % (analysis_prefix,barcode))
try:
subprocess.check_output([self.project.paths.rsem_tbam2gbam, self.project.paths.bowtie_index, aligned_bam, genomic_bam], stderr=subprocess.STDOUT)
except subprocess.CalledProcessError, err:
print_to_stderr(" CMD: %s" % str(err.cmd)[:100])
print_to_stderr(" stdout/stderr:")
print_to_stderr(err.output)
raise Exception(" === Error in rsem-tbam2gbam === ")
try:
subprocess.check_output([self.project.paths.samtools, 'sort', '-o', sorted_bam, genomic_bam], stderr=subprocess.STDOUT)
except subprocess.CalledProcessError, err:
print_to_stderr(" CMD: %s" % str(err.cmd)[:100])
print_to_stderr(" stdout/stderr:")
print_to_stderr(err.output)
raise Exception(" === Error in samtools sort === ")
try:
subprocess.check_output([self.project.paths.samtools, 'index', sorted_bam], stderr=subprocess.STDOUT)
except subprocess.CalledProcessError, err:
print_to_stderr(" CMD: %s" % str(err.cmd)[:100])
print_to_stderr(" stdout/stderr:")
print_to_stderr(err.output)
raise Exception(" === Error in samtools index === ")
os.remove(aligned_bam)
os.remove(genomic_bam)
return True
def aggregate_counts(self, analysis_prefix='', process_ambiguity_data=False):
if analysis_prefix:
analysis_prefix = analysis_prefix + '.'
quant_output_files = [fn[len(analysis_prefix):].split('.')[0] for fn in os.listdir(self.paths.quant_dir) if ('worker' in fn and fn[:len(analysis_prefix)]==analysis_prefix)]
else:
quant_output_files = [fn.split('.')[0] for fn in os.listdir(self.paths.quant_dir) if (fn[:6]=='worker')]
worker_names = [w[6:] for w in quant_output_files]
worker_indices = set(int(w.split('_')[0]) for w in worker_names)
total_workers = set(int(w.split('_')[1]) for w in worker_names)
if len(total_workers) > 1:
raise Exception("""Quantification for library %s, prefix '%s' was run with different numbers of total_workers.""" % (self.name, analysis_prefix))