-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathtrain.py
executable file
·765 lines (659 loc) · 38.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
import os
import time
import argparse
import json
import math
import numpy as np
import torch
import nvdiffrast.torch as dr
import xatlas
# Import data readers / generators
from dataset.dataset_mesh import DatasetMesh
from dataset.dataset_mesh import get_camera_params
# Import topology / geometry trainers
from geometry.dmtet import DMTetGeometry
from geometry.dlmesh import DLMesh
import render.renderutils as ru
from render import obj
from render import material
from render import util
from render import mesh
from render import texture
from render import mlptexture
from render import light
from render import render
from sd import StableDiffusion
from tqdm import tqdm
import open3d as o3d
import torchvision.transforms as transforms
from render import util
from render.video import Video
import random
import imageio
import os.path as osp
###############################################################################
# Mix background into a dataset image
###############################################################################
@torch.no_grad()
def prepare_batch(target, background= 'black',it = 0,coarse_iter=0):
target['mv'] = target['mv'].cuda()
target['mvp'] = target['mvp'].cuda()
target['campos'] = target['campos'].cuda()
target['normal_rotate'] = target['normal_rotate'].cuda()
# target['prompt_index'] = target['prompt_index'].cuda()
batch_size = target['mv'].shape[0]
resolution = target['resolution']
if background == 'white':
target['background']= torch.ones(batch_size, resolution[0], resolution[1], 3, dtype=torch.float32, device='cuda')
if background == 'black':
target['background'] = torch.zeros(batch_size, resolution[0], resolution[1], 3, dtype=torch.float32, device='cuda')
# if it<=coarse_iter:
# target['background'][:,:,:,0:2] -=1
# target['background'][:,:,:,2:3] +=1
return target
###############################################################################
# UV - map geometry & convert to a mesh
###############################################################################
@torch.no_grad()
def xatlas_uvmap(glctx, geometry, mat, FLAGS):
eval_mesh = geometry.getMesh(mat)
# Create uvs with xatlas
v_pos = eval_mesh.v_pos.detach().cpu().numpy()
t_pos_idx = eval_mesh.t_pos_idx.detach().cpu().numpy()
vmapping, indices, uvs = xatlas.parametrize(v_pos, t_pos_idx)
# Convert to tensors
indices_int64 = indices.astype(np.uint64, casting='same_kind').view(np.int64)
uvs = torch.tensor(uvs, dtype=torch.float32, device='cuda')
faces = torch.tensor(indices_int64, dtype=torch.int64, device='cuda')
new_mesh = mesh.Mesh(v_tex=uvs, t_tex_idx=faces, base=eval_mesh)
mask, kd, ks, normal = render.render_uv(glctx, new_mesh, FLAGS.texture_res, eval_mesh.material['kd_ks_normal'])
if FLAGS.layers > 1:
kd = torch.cat((kd, torch.rand_like(kd[...,0:1])), dim=-1)
kd_min, kd_max = torch.tensor(FLAGS.kd_min, dtype=torch.float32, device='cuda'), torch.tensor(FLAGS.kd_max, dtype=torch.float32, device='cuda')
ks_min, ks_max = torch.tensor(FLAGS.ks_min, dtype=torch.float32, device='cuda'), torch.tensor(FLAGS.ks_max, dtype=torch.float32, device='cuda')
nrm_min, nrm_max = torch.tensor(FLAGS.nrm_min, dtype=torch.float32, device='cuda'), torch.tensor(FLAGS.nrm_max, dtype=torch.float32, device='cuda')
new_mesh.material = material.Material({
'bsdf' : mat['bsdf'],
'kd' : texture.Texture2D(kd, min_max=[kd_min, kd_max]),
'ks' : texture.Texture2D(ks, min_max=[ks_min, ks_max]),
'normal' : texture.Texture2D(normal, min_max=[nrm_min, nrm_max])
})
return new_mesh
@torch.no_grad()
def xatlas_uvmap1(glctx, geometry, mat, FLAGS):
eval_mesh = geometry.getMesh(mat)
new_mesh = mesh.Mesh( base=eval_mesh)
mask, kd, ks, normal = render.render_uv1(glctx, new_mesh, FLAGS.texture_res, eval_mesh.material['kd_ks_normal'], FLAGS.uv_padding_block)
if FLAGS.layers > 1:
kd = torch.cat((kd, torch.rand_like(kd[...,0:1])), dim=-1)
kd_min, kd_max = torch.tensor(FLAGS.kd_min, dtype=torch.float32, device='cuda'), torch.tensor(FLAGS.kd_max, dtype=torch.float32, device='cuda')
ks_min, ks_max = torch.tensor(FLAGS.ks_min, dtype=torch.float32, device='cuda'), torch.tensor(FLAGS.ks_max, dtype=torch.float32, device='cuda')
nrm_min, nrm_max = torch.tensor(FLAGS.nrm_min, dtype=torch.float32, device='cuda'), torch.tensor(FLAGS.nrm_max, dtype=torch.float32, device='cuda')
new_mesh.material = material.Material({
'bsdf' : mat['bsdf'],
'kd' : texture.Texture2D(kd, min_max=[kd_min, kd_max]),
'ks' : texture.Texture2D(ks, min_max=[ks_min, ks_max]),
'normal' : texture.Texture2D(normal, min_max=[nrm_min, nrm_max])
})
return new_mesh
###############################################################################
# Utility functions for material
###############################################################################
def get_normalize_mesh(pro_path):
mesh = o3d.io.read_triangle_mesh(pro_path)
vertices = np.asarray(mesh.vertices)
shift = np.mean(vertices,axis=0)
scale = np.max(np.linalg.norm(vertices-shift, ord=2, axis=1))
vertices = (vertices-shift) / scale
mesh.vertices = o3d.cuda.pybind.utility.Vector3dVector(vertices)
return mesh
def initial_guness_material(geometry, mlp, FLAGS, init_mat=None):
# ipdb.set_trace(())
kd_min, kd_max = torch.tensor(FLAGS.kd_min, dtype=torch.float32, device='cuda'), torch.tensor(FLAGS.kd_max, dtype=torch.float32, device='cuda')
ks_min, ks_max = torch.tensor(FLAGS.ks_min, dtype=torch.float32, device='cuda'), torch.tensor(FLAGS.ks_max, dtype=torch.float32, device='cuda')
nrm_min, nrm_max = torch.tensor(FLAGS.nrm_min, dtype=torch.float32, device='cuda'), torch.tensor(FLAGS.nrm_max, dtype=torch.float32, device='cuda')
if mlp:
mlp_min = torch.cat((kd_min[0:3], ks_min, nrm_min), dim=0)
mlp_max = torch.cat((kd_max[0:3], ks_max, nrm_max), dim=0)
mlp_map_opt = mlptexture.MLPTexture3D(geometry.getAABB(), channels=9, min_max=[mlp_min, mlp_max])
mat = material.Material({'kd_ks_normal' : mlp_map_opt})
else:
# Setup Kd (albedo) and Ks (x, roughness, metalness) textures
if FLAGS.random_textures or init_mat is None:
num_channels = 4 if FLAGS.layers > 1 else 3
kd_init = torch.rand(size=FLAGS.texture_res + [num_channels], device='cuda') * (kd_max - kd_min)[None, None, 0:num_channels] + kd_min[None, None, 0:num_channels]
kd_map_opt = texture.create_trainable(kd_init , FLAGS.texture_res, not FLAGS.custom_mip, [kd_min, kd_max])
ksR = np.random.uniform(size=FLAGS.texture_res + [1], low=0.0, high=0.01)
ksG = np.random.uniform(size=FLAGS.texture_res + [1], low=ks_min[1].cpu(), high=ks_max[1].cpu())
ksB = np.random.uniform(size=FLAGS.texture_res + [1], low=ks_min[2].cpu(), high=ks_max[2].cpu())
ks_map_opt = texture.create_trainable(np.concatenate((ksR, ksG, ksB), axis=2), FLAGS.texture_res, not FLAGS.custom_mip, [ks_min, ks_max])
else:
kd_map_opt = texture.create_trainable(init_mat['kd'], FLAGS.texture_res, not FLAGS.custom_mip, [kd_min, kd_max])
ks_map_opt = texture.create_trainable(init_mat['ks'], FLAGS.texture_res, not FLAGS.custom_mip, [ks_min, ks_max])
# Setup normal map
if FLAGS.random_textures or init_mat is None or 'normal' not in init_mat:
normal_map_opt = texture.create_trainable(np.array([0, 0, 1]), FLAGS.texture_res, not FLAGS.custom_mip, [nrm_min, nrm_max])
else:
normal_map_opt = texture.create_trainable(init_mat['normal'], FLAGS.texture_res, not FLAGS.custom_mip, [nrm_min, nrm_max])
mat = material.Material({
'kd' : kd_map_opt,
'ks' : ks_map_opt,
'normal' : normal_map_opt
})
if init_mat is not None:
mat['bsdf'] = init_mat['bsdf']
else:
mat['bsdf'] = 'pbr'
return mat
###############################################################################
# Validation & testing
###############################################################################
# @torch.no_grad()
def validate_itr(glctx, target, geometry, opt_material, lgt, FLAGS, relight = None):
result_dict = {}
with torch.no_grad():
if FLAGS.mode == 'appearance_modeling':
with torch.no_grad():
lgt.build_mips()
if FLAGS.camera_space_light:
lgt.xfm(target['mv'])
if relight != None:
relight.build_mips()
buffers = geometry.render(glctx, target, lgt, opt_material, if_use_bump = FLAGS.if_use_bump)
result_dict['shaded'] = buffers['shaded'][0, ..., 0:3]
result_dict['shaded'] = util.rgb_to_srgb(result_dict['shaded'])
if relight != None:
result_dict['relight'] = geometry.render(glctx, target, relight, opt_material, if_use_bump = FLAGS.if_use_bump)['shaded'][0, ..., 0:3]
result_dict['relight'] = util.rgb_to_srgb(result_dict['relight'])
result_dict['mask'] = (buffers['shaded'][0, ..., 3:4])
result_image = result_dict['shaded']
if FLAGS.display is not None :
# white_bg = torch.ones_like(target['background'])
for layer in FLAGS.display:
if 'latlong' in layer and layer['latlong']:
if isinstance(lgt, light.EnvironmentLight):
result_dict['light_image'] = util.cubemap_to_latlong(lgt.base, FLAGS.display_res)
result_image = torch.cat([result_image, result_dict['light_image']], axis=1)
# elif 'relight' in layer:
# if not isinstance(layer['relight'], light.EnvironmentLight):
# layer['relight'] = light.load_env(layer['relight'])
# img = geometry.render(glctx, target, layer['relight'], opt_material)
# result_dict['relight'] = util.rgb_to_srgb(img[..., 0:3])[0]
# result_image = torch.cat([result_image, result_dict['relight']], axis=1)
elif 'bsdf' in layer:
buffers = geometry.render(glctx, target, lgt, opt_material, bsdf=layer['bsdf'], if_use_bump = FLAGS.if_use_bump)
if layer['bsdf'] == 'kd':
result_dict[layer['bsdf']] = util.rgb_to_srgb(buffers['shaded'][0, ..., 0:3])
elif layer['bsdf'] == 'normal':
result_dict[layer['bsdf']] = (buffers['shaded'][0, ..., 0:3] + 1) * 0.5
else:
result_dict[layer['bsdf']] = buffers['shaded'][0, ..., 0:3]
result_image = torch.cat([result_image, result_dict[layer['bsdf']]], axis=1)
return result_image, result_dict
def save_gif(dir,fps):
imgpath = dir
frames = []
for idx in sorted(os.listdir(imgpath)):
# print(idx)
img = osp.join(imgpath,idx)
frames.append(imageio.imread(img))
imageio.mimsave(os.path.join(dir, 'eval.gif'),frames,'GIF',duration=1/fps)
@torch.no_grad()
def validate(glctx, geometry, opt_material, lgt, dataset_validate, out_dir, FLAGS, relight= None):
# ==============================================================================================
# Validation loop
# ==============================================================================================
mse_values = []
psnr_values = []
dataloader_validate = torch.utils.data.DataLoader(dataset_validate, batch_size=1, collate_fn=dataset_validate.collate)
os.makedirs(out_dir, exist_ok=True)
shaded_dir = os.path.join(out_dir, "shaded")
relight_dir = os.path.join(out_dir, "relight")
kd_dir = os.path.join(out_dir, "kd")
ks_dir = os.path.join(out_dir, "ks")
normal_dir = os.path.join(out_dir, "normal")
mask_dir = os.path.join(out_dir, "mask")
os.makedirs(shaded_dir, exist_ok=True)
os.makedirs(relight_dir, exist_ok=True)
os.makedirs(kd_dir, exist_ok=True)
os.makedirs(ks_dir, exist_ok=True)
os.makedirs(normal_dir, exist_ok=True)
os.makedirs(mask_dir, exist_ok=True)
print("Running validation")
dataloader_validate = tqdm(dataloader_validate)
for it, target in enumerate(dataloader_validate):
# Mix validation background
target = prepare_batch(target, 'white')
result_image, result_dict = validate_itr(glctx, target, geometry, opt_material, lgt, FLAGS, relight)
for k in result_dict.keys():
np_img = result_dict[k].detach().cpu().numpy()
if k == 'shaded':
util.save_image(shaded_dir + '/' + ('val_%06d_%s.png' % (it, k)), np_img)
elif k == 'relight':
util.save_image(relight_dir + '/' + ('val_%06d_%s.png' % (it, k)), np_img)
elif k == 'kd':
util.save_image(kd_dir + '/' + ('val_%06d_%s.png' % (it, k)), np_img)
elif k == 'ks':
util.save_image(ks_dir + '/' + ('val_%06d_%s.png' % (it, k)), np_img)
elif k == 'normal':
util.save_image(normal_dir + '/' + ('val_%06d_%s.png' % (it, k)), np_img)
elif k == 'mask':
util.save_image(mask_dir + '/' + ('val_%06d_%s.png' % (it, k)), np_img)
if 'shaded' in result_dict.keys():
save_gif(shaded_dir,30)
if 'relight' in result_dict.keys():
save_gif(relight_dir,30)
if 'kd' in result_dict.keys():
save_gif(kd_dir,30)
if 'ks' in result_dict.keys():
save_gif(ks_dir,30)
if 'normal' in result_dict.keys():
save_gif(normal_dir,30)
if 'mask' in result_dict.keys():
save_gif(mask_dir,30)
return 0
###############################################################################
# Main shape fitter function / optimization loop
###############################################################################
class Trainer(torch.nn.Module):
def __init__(self, glctx, geometry, lgt, mat, optimize_geometry, optimize_light, FLAGS, guidance):
super(Trainer, self).__init__()
self.glctx = glctx
self.geometry = geometry
self.light = lgt
self.material = mat
self.optimize_geometry = optimize_geometry
self.optimize_light = optimize_light
self.FLAGS = FLAGS
self.guidance = guidance
self.if_flip_the_normal = FLAGS.if_flip_the_normal
self.if_use_bump = FLAGS.if_use_bump
if self.FLAGS.mode == 'appearance_modeling':
if not self.optimize_light:
with torch.no_grad():
self.light.build_mips()
self.params = list(self.material.parameters())
self.params += list(self.light.parameters()) if optimize_light else []
self.geo_params = list(self.geometry.parameters()) if optimize_geometry else []
def forward(self, target, it, if_normal, if_pretrain, scene_and_vertices ):
if self.FLAGS.mode == 'appearance_modeling':
if self.optimize_light:
self.light.build_mips()
if self.FLAGS.camera_space_light:
self.light.xfm(target['mv'])
if if_pretrain:
return self.geometry.decoder.pre_train_ellipsoid(it, scene_and_vertices)
else:
return self.geometry.tick(glctx, target, self.light, self.material, it , if_normal, self.guidance, self.FLAGS.mode, self.if_flip_the_normal, self.if_use_bump)
def optimize_mesh(
glctx,
geometry,
opt_material,
lgt,
dataset_train,
dataset_validate,
FLAGS,
log_interval=10,
optimize_light=True,
optimize_geometry=True,
guidance = None,
scene_and_vertices = None,
):
dataloader_train = torch.utils.data.DataLoader(dataset_train, batch_size=FLAGS.batch, collate_fn=dataset_train.collate, shuffle=False)
dataloader_validate = torch.utils.data.DataLoader(dataset_validate, batch_size=1, collate_fn=dataset_train.collate)
model = Trainer(glctx, geometry, lgt, opt_material, optimize_geometry, optimize_light, FLAGS, guidance)
# model = model.cuda()
if optimize_geometry:
optimizer_mesh = torch.optim.AdamW(model.geo_params, lr=0.001, betas=(0.9, 0.99), eps=1e-15)
# scheduler_mesh = torch.optim.lr_scheduler.MultiStepLR(optimizer_mesh,
# [400],
# 0.1)
optimizer = torch.optim.AdamW(model.params, lr=0.01, betas=(0.9, 0.99), eps=1e-15)
if FLAGS.multi_gpu:
model = model.cuda()
model = torch.nn.parallel.DistributedDataParallel(model,
device_ids=[FLAGS.local_rank],
find_unused_parameters= (FLAGS.mode =='geometry_modeling')
)
img_cnt = 0
img_loss_vec = []
reg_loss_vec = []
iter_dur_vec = []
def cycle(iterable):
iterator = iter(iterable)
while True:
try:
yield next(iterator)
except StopIteration:
iterator = iter(iterable)
v_it = cycle(dataloader_validate)
scaler = torch.cuda.amp.GradScaler(enabled=True)
rot_ang = 0
if FLAGS.local_rank == 0:
video = Video(FLAGS.out_dir)
if FLAGS.local_rank == 0:
dataloader_train = tqdm(dataloader_train)
for it, target in enumerate(dataloader_train):
# Mix randomized background into dataset image
target = prepare_batch(target, FLAGS.train_background,it, FLAGS.coarse_iter)
# ==============================================================================================
# Display / save outputs. Do it before training so we get initial meshes
# ==============================================================================================
# Show/save image before training step (want to get correct rendering of input)
if FLAGS.local_rank == 0:
save_image = FLAGS.save_interval and (it % FLAGS.save_interval == 0)
save_video = FLAGS.video_interval and (it % FLAGS.video_interval == 0)
if save_image:
result_image, result_dict = validate_itr(glctx, prepare_batch(next(v_it), FLAGS.train_background), geometry, opt_material, lgt, FLAGS) #prepare_batch(next(v_it), FLAGS.background)
np_result_image = result_image.detach().cpu().numpy()
util.save_image(FLAGS.out_dir + '/' + ('img_%s_%06d.png' % (FLAGS.mode, img_cnt)), np_result_image)
img_cnt = img_cnt+1
if save_video:
with torch.no_grad():
params = get_camera_params(
resolution=512,
fov=45,
elev_angle=-20,
azim_angle =rot_ang,
)
rot_ang += 1
if FLAGS.mode =='geometry_modeling':
buffers = geometry.render(glctx, params, lgt, opt_material, bsdf='normal', if_use_bump = FLAGS.if_use_bump)
video_image = (buffers['shaded'][0, ..., 0:3]+1)/2
else:
buffers = geometry.render(glctx, params, lgt, opt_material, bsdf='pbr', if_use_bump = FLAGS.if_use_bump)
video_image = util.rgb_to_srgb(buffers['shaded'][0, ..., 0:3])
video_image = video.ready_image(video_image)
iter_start_time = time.time()
if FLAGS.mode =='geometry_modeling':
if it<=400:
if_pretrain = True
else:
if_pretrain = False
if_normal =True
else:
if_pretrain = False
if_normal = False
with torch.cuda.amp.autocast(enabled= True):
if if_pretrain== True:
reg_loss = model(target, it, if_normal, if_pretrain= if_pretrain, scene_and_vertices = scene_and_vertices)
img_loss = 0
sds_loss = 0
if if_pretrain == False:
sds_loss,img_loss, reg_loss = model(target, it, if_normal, if_pretrain= if_pretrain, scene_and_vertices =None)
# ==============================================================================================
# Final loss
# ==============================================================================================
total_loss = img_loss + reg_loss + sds_loss
# model.geometry.decoder.net.params.grad /= 100
if if_pretrain == True:
scaler.scale(total_loss).backward()
if if_pretrain == False:
scaler.scale(total_loss).backward()
img_loss_vec.append(img_loss.item())
reg_loss_vec.append(reg_loss.item())
# ==============================================================================================
# Backpropagate
# ==============================================================================================
if if_normal == False and if_pretrain == False:
scaler.step(optimizer)
optimizer.zero_grad()
if if_normal == True or if_pretrain == True:
if optimize_geometry:
scaler.step(optimizer_mesh)
# scheduler_mesh.step()
optimizer_mesh.zero_grad()
scaler.update()
# ==============================================================================================
# Clamp trainables to reasonable range
# ==============================================================================================
with torch.no_grad():
if 'kd' in opt_material:
opt_material['kd'].clamp_()
if 'ks' in opt_material:
opt_material['ks'].clamp_()
if 'normal' in opt_material:
opt_material['normal'].clamp_()
opt_material['normal'].normalize_()
if lgt is not None:
lgt.clamp_(min=0.0)
torch.cuda.current_stream().synchronize()
iter_dur_vec.append(time.time() - iter_start_time)
# ==============================================================================================
# Logging
# ==============================================================================================
# if it % log_interval == 0 and FLAGS.local_rank == 0 and if_pretrain == False:
# img_loss_avg = np.mean(np.asarray(img_loss_vec[-log_interval:]))
# reg_loss_avg = np.mean(np.asarray(reg_loss_vec[-log_interval:]))
# iter_dur_avg = np.mean(np.asarray(iter_dur_vec[-log_interval:]))
# remaining_time = (FLAGS.iter-it)*iter_dur_avg
# if optimize_geometry:
# print("iter=%5d, img_loss=%.6f, reg_loss=%.6f, mesh_lr=%.5f, time=%.1f ms, rem=%s, mat_lr=%.5f" %
# (it, img_loss_avg, reg_loss_avg, optimizer_mesh.param_groups[0]['lr'], iter_dur_avg*1000, util.time_to_text(remaining_time),optimizer.param_groups[0]['lr']))
# else:
# print("iter=%5d, img_loss=%.6f, reg_loss=%.6f, time=%.1f ms, rem=%s, mat_lr=%.5f" %
# (it, img_loss_avg, reg_loss_avg, iter_dur_avg*1000, util.time_to_text(remaining_time),optimizer.param_groups[0]['lr']))
return geometry, opt_material
def seed_everything(seed, local_rank):
random.seed(seed + local_rank)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed + local_rank)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# torch.backends.cudnn.benchmark = True
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='nvdiffrec')
parser.add_argument('--config', type=str, default=None, help='Config file')
parser.add_argument('-i', '--iter', type=int, default=5000)
parser.add_argument('-b', '--batch', type=int, default=1)
parser.add_argument('-s', '--spp', type=int, default=1)
parser.add_argument('-l', '--layers', type=int, default=1)
parser.add_argument('-r', '--train-res', nargs=2, type=int, default=[512, 512])
parser.add_argument('-dr', '--display-res', type=int, default=None)
parser.add_argument('-tr', '--texture-res', nargs=2, type=int, default=[1024, 1024])
parser.add_argument('-si', '--save-interval', type=int, default=1000, help="The interval of saving an image")
parser.add_argument('-vi', '--video_interval', type=int, default=10, help="The interval of saving a frame of the video")
parser.add_argument('-mr', '--min-roughness', type=float, default=0.08)
parser.add_argument('-mip', '--custom-mip', action='store_true', default=False)
parser.add_argument('-rt', '--random-textures', action='store_true', default=False)
parser.add_argument('-bg', '--train_background', default='black', choices=['black', 'white', 'checker', 'reference'])
parser.add_argument('-o', '--out-dir', type=str, default=None)
parser.add_argument('-rm', '--ref_mesh', type=str)
parser.add_argument('-bm', '--base-mesh', type=str, default=None)
parser.add_argument('--validate', type=bool, default=True)
parser.add_argument("--local_rank", type=int, default=0, help="For distributed training: local_rank")
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
parser.add_argument("--add_directional_text", action='store_true', default=False)
parser.add_argument('--mode', default='geometry_modeling', choices=['geometry_modeling', 'appearance_modeling'])
parser.add_argument('--text', type=str, default="", help="text prompt")
parser.add_argument('--sdf_init_shape', default='ellipsoid', choices=['ellipsoid', 'cylinder', 'custom_mesh'])
parser.add_argument('--camera_random_jitter', type= float, default=0.4, help="A large value is advantageous for the extension of objects such as ears or sharp corners to grow.")
parser.add_argument('--fovy_range', nargs=2, type=float, default=[25.71, 45.00])
parser.add_argument('--elevation_range', nargs=2, type=int, default=[-10, 45], help="The elevatioin range must in [-90, 90].")
parser.add_argument("--guidance_weight", type=int, default=100, help="The weight of classifier-free guidance")
parser.add_argument("--sds_weight_strategy", type=int, nargs=1, default=0, choices=[0, 1, 2], help="The strategy of the sds loss's weight")
parser.add_argument("--translation_y", type= float, nargs=1, default= 0 , help="translation of the initial shape on the y-axis")
parser.add_argument("--translation_z", type= float, nargs=1, default= 0 , help="translation of the initial shape on the z-axis")
parser.add_argument("--coarse_iter", type= int, nargs=1, default= 1000 , help="The iteration number of the coarse stage.")
parser.add_argument('--early_time_step_range', nargs=2, type=float, default=[0.02, 0.5], help="The time step range in early phase")
parser.add_argument('--late_time_step_range', nargs=2, type=float, default=[0.02, 0.5], help="The time step range in late phase")
parser.add_argument("--sdf_init_shape_rotate_x", type= int, nargs=1, default= 0 , help="rotation of the initial shape on the x-axis")
parser.add_argument("--if_flip_the_normal", action='store_true', default=False , help="Flip the x-axis positive half-axis of Normal. We find this process helps to alleviate the Janus problem.")
parser.add_argument("--front_threshold", type= int, nargs=1, default= 45 , help="the range of front view would be [-front_threshold, front_threshold")
parser.add_argument("--if_use_bump", type=bool, default= True , help="whether to use perturbed normals during appearing modeling")
parser.add_argument("--uv_padding_block", type= int, default= 4 , help="The block of uv padding.")
parser.add_argument("--negative_text", type=str, default="", help="adding negative text can improve the visual quality in appearance modeling")
FLAGS = parser.parse_args()
FLAGS.mtl_override = None # Override material of model
FLAGS.dmtet_grid = 64 # Resolution of initial tet grid. We provide 64, 128 and 256 resolution grids. Other resolutions can be generated with https://github.com/crawforddoran/quartet
FLAGS.mesh_scale = 2.1 # Scale of tet grid box. Adjust to cover the model
FLAGS.env_scale = 1.0 # Env map intensity multiplier
FLAGS.envmap = None # HDR environment probe
FLAGS.relight = None # HDR environment probe(relight)
FLAGS.display = None # Conf validation window/display. E.g. [{"relight" : <path to envlight>}]
FLAGS.camera_space_light = False # Fixed light in camera space. This is needed for setups like ethiopian head where the scanned object rotates on a stand.
FLAGS.lock_light = False # Disable light optimization in the second pass
FLAGS.lock_pos = False # Disable vertex position optimization in the second pass
FLAGS.pre_load = True # Pre-load entire dataset into memory for faster training
FLAGS.kd_min = [ 0.0, 0.0, 0.0, 0.0] # Limits for kd
FLAGS.kd_max = [ 1.0, 1.0, 1.0, 1.0]
FLAGS.ks_min = [ 0.0, 0.08, 0.0] # Limits for ks
FLAGS.ks_max = [ 1.0, 1.0, 1.0]
FLAGS.nrm_min = [-1.0, -1.0, 0.0] # Limits for normal map
FLAGS.nrm_max = [ 1.0, 1.0, 1.0]
FLAGS.cam_near_far = [1, 50]
FLAGS.learn_light = False
FLAGS.gpu_number = 1
FLAGS.sdf_init_shape_scale=[1.0, 1.0, 1.0]
# FLAGS.local_rank = 0
FLAGS.multi_gpu = "WORLD_SIZE" in os.environ and int(os.environ["WORLD_SIZE"]) > 1
if FLAGS.multi_gpu:
FLAGS.gpu_number = int(os.environ["WORLD_SIZE"])
FLAGS.local_rank = int(os.environ["LOCAL_RANK"])
torch.distributed.init_process_group(backend="nccl", world_size = FLAGS.gpu_number, rank = FLAGS.local_rank)
torch.cuda.set_device(FLAGS.local_rank)
if FLAGS.config is not None:
data = json.load(open(FLAGS.config, 'r'))
for key in data:
FLAGS.__dict__[key] = data[key]
if FLAGS.display_res is None:
FLAGS.display_res = FLAGS.train_res
if FLAGS.out_dir is None:
FLAGS.out_dir = 'out/cube_%d' % (FLAGS.train_res)
else:
FLAGS.out_dir = 'out/' + FLAGS.out_dir
if FLAGS.local_rank == 0:
print("Config / Flags:")
print("---------")
for key in FLAGS.__dict__.keys():
print(key, FLAGS.__dict__[key])
print("---------")
seed_everything(FLAGS.seed, FLAGS.local_rank)
os.makedirs(FLAGS.out_dir, exist_ok=True)
# glctx = dr.RasterizeGLContext()
glctx = dr.RasterizeCudaContext()
# ==============================================================================================
# Create data pipeline
# ==============================================================================================
dataset_train = DatasetMesh(glctx, FLAGS, validate=False)
dataset_validate = DatasetMesh(glctx, FLAGS, validate=True)
dataset_gif = DatasetMesh(glctx, FLAGS, gif=True)
# ==============================================================================================
# Create env light with trainable parameters
# ==============================================================================================
if FLAGS.mode == 'appearance_modeling' and FLAGS.base_mesh is not None:
if FLAGS.learn_light:
lgt = light.create_trainable_env_rnd(512, scale=0.0, bias=1)
else:
lgt = light.load_env(FLAGS.envmap, scale=FLAGS.env_scale)
else:
lgt = None
# lgt1 = light.load_env(FLAGS.envmap1, scale=FLAGS.env_scale)
if FLAGS.sdf_init_shape in ['ellipsoid', 'cylinder', 'custom_mesh'] and FLAGS.mode == 'geometry_modeling':
if FLAGS.sdf_init_shape == 'ellipsoid':
init_shape = o3d.geometry.TriangleMesh.create_sphere(1)
elif FLAGS.sdf_init_shape == 'cylinder':
init_shape = o3d.geometry.TriangleMesh.create_cylinder(radius=0.75, height=0.8, resolution=20, split=4, create_uv_map=False)
elif FLAGS.sdf_init_shape == 'custom_mesh':
if FLAGS.base_mesh:
init_shape = get_normalize_mesh(FLAGS.base_mesh)
else:
assert False, "[Error] The path of custom mesh is invalid ! (geometry modeling)"
else:
assert False, "Invalid init type"
vertices = np.asarray(init_shape.vertices)
vertices[...,0]=vertices[...,0] * FLAGS.sdf_init_shape_scale[0]
vertices[...,1]=vertices[...,1] * FLAGS.sdf_init_shape_scale[1]
vertices[...,2]=vertices[...,2] * FLAGS.sdf_init_shape_scale[2]
vertices = vertices @ util.rotate_x_2(np.deg2rad(FLAGS.sdf_init_shape_rotate_x))
vertices[...,1]=vertices[...,1] + FLAGS.translation_y
vertices[...,2]=vertices[...,2] + FLAGS.translation_z
init_shape.vertices = o3d.cuda.pybind.utility.Vector3dVector(vertices)
points_surface = np.asarray(init_shape.sample_points_poisson_disk(5000).points)
init_shape = o3d.t.geometry.TriangleMesh.from_legacy(init_shape)
scene = o3d.t.geometry.RaycastingScene()
scene.add_triangles(init_shape)
scene_and_vertices = [scene, points_surface]
guidance = StableDiffusion(device = 'cuda',
mode = FLAGS.mode,
text = FLAGS.text,
add_directional_text = FLAGS.add_directional_text,
batch = FLAGS.batch,
guidance_weight = FLAGS.guidance_weight,
sds_weight_strategy = FLAGS.sds_weight_strategy,
early_time_step_range = FLAGS.early_time_step_range,
late_time_step_range= FLAGS.late_time_step_range,
negative_text = FLAGS.negative_text)
guidance.eval()
for p in guidance.parameters():
p.requires_grad_(False)
if FLAGS.mode == 'geometry_modeling' :
geometry = DMTetGeometry(FLAGS.dmtet_grid, FLAGS.mesh_scale, FLAGS)
mat = initial_guness_material(geometry, True, FLAGS)
# Run optimization
geometry, mat = optimize_mesh(glctx, geometry, mat, lgt, dataset_train, dataset_validate,
FLAGS, optimize_light=FLAGS.learn_light,optimize_geometry= not FLAGS.lock_pos, guidance= guidance, scene_and_vertices= scene_and_vertices)
if FLAGS.local_rank == 0 and FLAGS.validate:
validate(glctx, geometry, mat, lgt, dataset_gif, os.path.join(FLAGS.out_dir, "validate"), FLAGS)
# Create textured mesh from result
if FLAGS.local_rank == 0:
base_mesh = xatlas_uvmap(glctx, geometry, mat, FLAGS)
# # Free temporaries / cached memory
torch.cuda.empty_cache()
mat['kd_ks_normal'].cleanup()
del mat['kd_ks_normal']
if FLAGS.local_rank == 0:
# Dump mesh for debugging.
os.makedirs(os.path.join(FLAGS.out_dir, "dmtet_mesh"), exist_ok=True)
obj.write_obj(os.path.join(FLAGS.out_dir, "dmtet_mesh/"), base_mesh)
elif FLAGS.mode == 'appearance_modeling':
# ==============================================================================================
# Train with fixed topology (mesh)
# ==============================================================================================
if FLAGS.base_mesh is None:
assert False, "[Error] The path of custom mesh is invalid ! (appearance modeling)"
# Load initial guess mesh from file
base_mesh = mesh.load_mesh(FLAGS.base_mesh)
geometry = DLMesh(base_mesh, FLAGS)
# mat = initial_guness_material(geometry, False, FLAGS, init_mat=base_mesh.material)
mat = initial_guness_material(geometry, True, FLAGS)
geometry, mat = optimize_mesh(glctx,
geometry,
mat,
lgt,
dataset_train,
dataset_validate,
FLAGS,
optimize_light=FLAGS.learn_light,
optimize_geometry= False,
guidance= guidance,
)
# ==============================================================================================
# Validate
# ==============================================================================================
if FLAGS.validate and FLAGS.local_rank == 0:
if FLAGS.relight != None:
relight = light.load_env(FLAGS.relight, scale=FLAGS.env_scale)
else:
relight = None
validate(glctx, geometry, mat, lgt, dataset_gif, os.path.join(FLAGS.out_dir, "validate"), FLAGS, relight)
if FLAGS.local_rank == 0:
base_mesh = xatlas_uvmap1(glctx, geometry, mat, FLAGS)
torch.cuda.empty_cache()
mat['kd_ks_normal'].cleanup()
del mat['kd_ks_normal']
lgt = lgt.clone()
if FLAGS.local_rank == 0:
os.makedirs(os.path.join(FLAGS.out_dir, "dmtet_mesh"), exist_ok=True)
obj.write_obj(os.path.join(FLAGS.out_dir, "dmtet_mesh/"), base_mesh)
light.save_env_map(os.path.join(FLAGS.out_dir, "dmtet_mesh/probe.hdr"), lgt)
else:
assert False, "Invalid mode type"