-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransfer_measure.py
236 lines (204 loc) · 11 KB
/
transfer_measure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import json
import argparse
import numpy as np
from domainbed.lib import misc
from domainbed import algorithms
import torch
from domainbed.lib.fast_data_loader import InfiniteDataLoader, FastDataLoader
from domainbed import datasets
import torch.nn.functional as F
import copy
import torch.nn as nn
import os
from domainbed.misc_t import argmax, argmin, round_l, loss_gap, loss_gap_batch, distance, proj, loss_acc
import pickle
import sys
from domainbed import hparams_registry
class Transfer_hparam():
''' hyperparameters for sup_{|h' - h| leq delta} (max_i loss_i(h) - min_j loss_j(h))'''
def __init__(self, batch_size=64, delta=2.0, num_epochs=30, optim = 'SGD'):
dict_ = {}
dict_['delta'] = delta
dict_['num_epochs'] = num_epochs
dict_['optimizer'] = optim
dict_['batch_size'] = batch_size
self.dict_ = dict_
def __repr__(self):
return self.dict_
def save_checkpoint(checkpoint_dir, filename, algorithm, epoch):
save_dict = {'next_epoch': epoch,
'model_dict': algorithm.cpu().state_dict()}
torch.save(save_dict, os.path.join(checkpoint_dir, filename))
def local_classifier(args, dir_to_save, num_domains, in_splits, out_splits, model, device, transfer_hparam, hparams, start_epoch, optimizer='Adam', seed=0):
''' compute sup_{|h' - h| leq delta} (max_i loss_i(h) - min_j loss_j(h))'''
''' this is the test phase so we using both training and testing data of each env'''
delta = transfer_hparam.dict_['delta']
num_epochs = transfer_hparam.dict_['num_epochs']
batch_size = transfer_hparam.dict_['batch_size']
steps_per_epoch = min([len(env)/hparams['batch_size'] for env, _ in in_splits])
steps_per_epoch = int(steps_per_epoch + 1)
if optimizer == 'Adam':
optimizer = torch.optim.Adam(model.classifier.parameters(), lr=hparams['lr'], weight_decay = hparams['weight_decay'])
elif optimizer == 'SGD':
optimizer = torch.optim.SGD(model.classifier.parameters(), lr=0.01, momentum=0.9)
'''projection, compute max_index and min_index, load data, compute grad '''
''' the following loader is for evaluation'''
env_in_loaders = [InfiniteDataLoader(dataset=env, weights=env_weights,
batch_size=batch_size, num_workers=dataset.N_WORKERS)
for i, (env, env_weights) in enumerate(in_splits)]
env_out_loaders = [FastDataLoader(
dataset=env, batch_size=batch_size, num_workers=dataset.N_WORKERS)
for i, (env, env_weights) in enumerate(out_splits)]
if not os.path.exists(dir_to_save):
os.makedirs(dir_to_save)
print('save to directory: ', dir_to_save)
path = os.path.join(dir_to_save, 'delta_' + str(delta) + '_seed_' + str(seed) + '.jsonl')
if start_epoch == 0 and os.path.exists(path):
os.remove(path)
''' computing of sup starts here'''
model.to(device)
learned_featurizer = copy.deepcopy(model.featurizer)
learned_classifier = copy.deepcopy(model.classifier)
if delta == 0.0:
num_epochs = 1
if start_epoch >= num_epochs:
return
for epoch in range(start_epoch, num_epochs):
model.to(device)
test_minibatches_iterator = zip(*env_in_loaders)
# train on the training data from each domain
for step in range(steps_per_epoch):
minibatches_device = [(x.to(device), y.to(device)) for x,y in next(test_minibatches_iterator)]
loss_gap_ = loss_gap_batch(num_domains, minibatches_device, model, device) # compute the loss_gap_
optimizer.zero_grad()
loss_gap_.backward()
optimizer.step()
model.classifier = proj(delta, model.classifier, learned_classifier)
if not args.out_only:
loss_all_in, acc_all_in = loss_acc(num_domains, env_in_loaders, model, device)
max_loss_in, min_loss_in = max(loss_all_in), min(loss_all_in)
max_acc_in, min_acc_in = max(acc_all_in), min(acc_all_in)
loss_all_out, acc_all_out = loss_acc(num_domains, env_out_loaders, model, device)
max_loss_out, min_loss_out = max(loss_all_out), min(loss_all_out)
max_acc_out, min_acc_out = max(acc_all_out), min(acc_all_out)
max_index, min_index = argmax(acc_all_out), argmin(acc_all_out)
if not args.out_only:
print(f"seed: {seed} epoch: {epoch} step: {step} distance: {distance(model.classifier, learned_classifier).item():4f}, max_index: {max_index}, min_index: {min_index}, loss gap: {-loss_gap_.item():4f} losses_in: {[int(loss*10000)/10000 for loss in loss_all_in]} accs_in: {[int(acc*10000)/10000 for acc in acc_all_in]}, losses_out: {[int(loss*10000)/10000 for loss in loss_all_out]} accs_out: {[int(acc*10000)/10000 for acc in acc_all_out]}, max loss_in: {max_loss_in:4f}, min loss_in: {min_loss_in:4f}, max_acc_in: {max_acc_in:4f}, min_acc_in: {min_acc_in:4f}, max loss_out: {max_loss_out:4f}, min loss_out: {min_loss_out:4f}, max_acc_out: {max_acc_out:4f}, min_acc_out: {min_acc_out:4f}")
else:
print(f"seed: {seed} epoch: {epoch} step: {step} distance: {distance(model.classifier, learned_classifier).item():4f}, max_index: {max_index}, min_index: {min_index}, loss gap: {-loss_gap_.item():4f}, losses_out: {[int(loss*10000)/10000 for loss in loss_all_out]} accs_out: {[int(acc*10000)/10000 for acc in acc_all_out]}, max loss_out: {max_loss_out:4f}, min loss_out: {min_loss_out:4f}, max_acc_out: {max_acc_out:4f}, min_acc_out: {min_acc_out:4f}")
distance_ = distance(model.classifier, learned_classifier).item()
print(f'saving to checkpoint')
'''safe save'''
dict_ = {}
if not args.out_only:
dict_['loss_in'] = loss_all_in
dict_['acc_in'] = acc_all_in
dict_['loss_out'] = loss_all_out
dict_['acc_out'] = acc_all_out
dict_['max_index'] = max_index
dict_['min_index'] = min_index
dict_['epoch'] = epoch
dict_['distance'] = distance_
with open(path, 'a') as f:
f.write(json.dumps(dict_, sort_keys=True) + '\n')
save_checkpoint(args.checkpoint_dir, 'model_temp.pkl', model, epoch + 1)
check_path = os.path.join(args.checkpoint_dir, 'model.pkl')
temp_path = os.path.join(args.checkpoint_dir, 'model_temp.pkl')
os.replace(temp_path, check_path)
if __name__ == '__main__':
if torch.cuda.is_available():
device = 'cuda'
else:
device = 'cpu'
print('device: ', device)
parser = argparse.ArgumentParser(description="Evaluate Transferability")
parser.add_argument('--data_dir', type=str, default='domainbed/datasets/')
parser.add_argument('--algorithm', type=str, default='ERM')
parser.add_argument('--test_envs', type=int, nargs='+', default=[0])
parser.add_argument('--dataset', type=str, default="RotatedMNIST")
parser.add_argument('--output_dir', type=str, default="results_transfer")
parser.add_argument('--delta', type=float, default=2.0)
parser.add_argument('--adv_epoch', type=int, default=10)
parser.add_argument('--d_steps_per_g', type=int, default=10)
parser.add_argument('--train_delta', type=float, default=2.0)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--out_only', type=bool, default=True)
parser.add_argument('--checkpoint_dir', type=str, default='checkpoint_transfer/')
args = parser.parse_args()
delta = args.delta
seed = args.seed
adv_epoch = args.adv_epoch
print('Args: ')
for k, v in sorted(vars(args).items()):
print(f'\t{k}: {v}')
if args.algorithm == 'Transfer':
data_dir_pure = os.path.join(args.dataset, args.algorithm + '_' + str(args.d_steps_per_g) + '_' + str(args.train_delta))
#print('data_dir_pure: ', data_dir_pure)
else:
data_dir_pure = os.path.join(args.dataset, args.algorithm)
data_dir_saved = os.path.join('results', data_dir_pure)
data_dir_to_save = os.path.join('results_transfer', data_dir_pure)
os.makedirs(data_dir_to_save, exist_ok=True)
sys.stdout = misc.Tee(os.path.join(data_dir_to_save, 'out.txt'))
sys.stderr = misc.Tee(os.path.join(data_dir_to_save, 'err.txt'))
model = torch.load(data_dir_saved + '/model.pkl')
algorithm_dict = model['model_dict']
if args.algorithm == 'GroupDRO':
algorithm_dict['q'] = torch.tensor([])
algorithm_class = algorithms.get_algorithm_class(args.algorithm)
input_shape = model['model_input_shape']
num_classes = model['model_num_classes']
#num_domains = model['model_num_domains'] + len(args.test_envs)
#hparams = model['model_hparams']
hparams = hparams_registry.default_hparams(args.algorithm, args.dataset)
'''dataset'''
if args.dataset in vars(datasets):
dataset = vars(datasets)[args.dataset](args.data_dir, args.test_envs, hparams)
else:
raise NotImplementedError
data_dir = args.data_dir
alg_label = args.algorithm
dataset_label = args.dataset
data_dir = data_dir + dataset_label
in_file = os.path.join(data_dir, 'in.pickle')
out_file = os.path.join(data_dir, 'out.pickle')
print("data loading")
with open(in_file, 'rb') as f_in:
in_splits = pickle.load(f_in)
with open(out_file, 'rb') as f_out:
out_splits = pickle.load(f_out)
print("data loaded")
num_domains = len(in_splits)
print('num_domains: ', num_domains)
steps_per_epoch = min([len(env)/hparams['batch_size'] for env, _ in in_splits])
print("main batch size: ", hparams['batch_size'])
batch_size = hparams['batch_size']
print('step per epochs: ', steps_per_epoch)
print('lengths: ', [len(env) for env, _ in (in_splits + out_splits)])
print('lengths/batch: ', [len(env)/batch_size for env, _ in in_splits])
# if you want to include out_split, just do in_splits + out_splits
transfer_hparam = Transfer_hparam(batch_size=batch_size, delta=delta, num_epochs=adv_epoch)
print("delta: ", transfer_hparam.dict_['delta'])
dir_to_save = os.path.join('results_transfer', data_dir_pure)
print("seed: ", seed)
algorithm = algorithm_class(input_shape, num_classes, num_domains, hparams)
'''checkpoint'''
check_path = os.path.join(args.checkpoint_dir, 'model.pkl')
checkpoint_dir = args.checkpoint_dir
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
if os.path.exists(check_path):
checkpoint_dict = torch.load(check_path)
start_epoch = checkpoint_dict['next_epoch']
adv_epoch = adv_epoch - start_epoch
print(f'loading model...starting from epoch {start_epoch} and run for {adv_epoch} epochs')
algorithm_dict = checkpoint_dict['model_dict']
if args.algorithm == 'GroupDRO':
algorithm_dict['q'] = torch.tensor([])
algorithm.load_state_dict(algorithm_dict)
else:
start_epoch = 0
algorithm.load_state_dict(algorithm_dict)
algorithm.to(device)
print("algorithm loaded")
local_classifier(args, dir_to_save, num_domains, in_splits, out_splits, algorithm, device, transfer_hparam, hparams, start_epoch, optimizer='Adam', seed=seed)