-
Notifications
You must be signed in to change notification settings - Fork 6.5k
/
Copy pathbatch_parse_table_v1beta2.py
108 lines (88 loc) · 3.59 KB
/
batch_parse_table_v1beta2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# [START documentai_batch_parse_table_beta]
import re
from google.cloud import documentai_v1beta2 as documentai
from google.cloud import storage
def batch_parse_table(
project_id="YOUR_PROJECT_ID",
input_uri="gs://cloud-samples-data/documentai/form.pdf",
destination_uri="gs://your-bucket-id/path/to/save/results/",
timeout=90,
):
"""Parse a form"""
client = documentai.DocumentUnderstandingServiceClient()
gcs_source = documentai.types.GcsSource(uri=input_uri)
# mime_type can be application/pdf, image/tiff,
# and image/gif, or application/json
input_config = documentai.types.InputConfig(
gcs_source=gcs_source, mime_type="application/pdf"
)
# where to write results
output_config = documentai.types.OutputConfig(
gcs_destination=documentai.types.GcsDestination(uri=destination_uri),
pages_per_shard=1, # Map one doc page to one output page
)
# Improve table parsing results by providing bounding boxes
# specifying where the box appears in the document (optional)
table_bound_hints = [
documentai.types.TableBoundHint(
page_number=1,
bounding_box=documentai.types.BoundingPoly(
# Define a polygon around tables to detect
# Each vertice coordinate must be a number between 0 and 1
normalized_vertices=[
# Top left
documentai.types.geometry.NormalizedVertex(x=0, y=0),
# Top right
documentai.types.geometry.NormalizedVertex(x=1, y=0),
# Bottom right
documentai.types.geometry.NormalizedVertex(x=1, y=1),
# Bottom left
documentai.types.geometry.NormalizedVertex(x=0, y=1),
]
),
)
]
# Setting enabled=True enables form extraction
table_extraction_params = documentai.types.TableExtractionParams(
enabled=True, table_bound_hints=table_bound_hints
)
# Location can be 'us' or 'eu'
parent = "projects/{}/locations/us".format(project_id)
request = documentai.types.ProcessDocumentRequest(
input_config=input_config,
output_config=output_config,
table_extraction_params=table_extraction_params,
)
requests = []
requests.append(request)
batch_request = documentai.types.BatchProcessDocumentsRequest(
parent=parent, requests=requests
)
operation = client.batch_process_documents(batch_request)
# Wait for the operation to finish
operation.result(timeout)
# Results are written to GCS. Use a regex to find
# output files
match = re.match(r"gs://([^/]+)/(.+)", destination_uri)
output_bucket = match.group(1)
prefix = match.group(2)
storage_client = storage.client.Client()
bucket = storage_client.get_bucket(output_bucket)
blob_list = list(bucket.list_blobs(prefix=prefix))
print("Output files:")
for blob in blob_list:
print(blob.name)
# [END documentai_batch_parse_table_beta]