-
Notifications
You must be signed in to change notification settings - Fork 6.5k
/
Copy pathvideo_detect_logo_gcs.py
101 lines (83 loc) · 4.36 KB
/
video_detect_logo_gcs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# [START video_detect_logo_gcs]
from google.cloud import videointelligence
def detect_logo_gcs(input_uri="gs://YOUR_BUCKET_ID/path/to/your/file.mp4"):
client = videointelligence.VideoIntelligenceServiceClient()
features = [videointelligence.Feature.LOGO_RECOGNITION]
operation = client.annotate_video(
request={"features": features, "input_uri": input_uri}
)
print("Waiting for operation to complete...")
response = operation.result()
# Get the first response, since we sent only one video.
annotation_result = response.annotation_results[0]
# Annotations for list of logos detected, tracked and recognized in video.
for logo_recognition_annotation in annotation_result.logo_recognition_annotations:
entity = logo_recognition_annotation.entity
# Opaque entity ID. Some IDs may be available in [Google Knowledge Graph
# Search API](https://developers.google.com/knowledge-graph/).
print("Entity Id : {}".format(entity.entity_id))
print("Description : {}".format(entity.description))
# All logo tracks where the recognized logo appears. Each track corresponds
# to one logo instance appearing in consecutive frames.
for track in logo_recognition_annotation.tracks:
# Video segment of a track.
print(
"\n\tStart Time Offset : {}.{}".format(
track.segment.start_time_offset.seconds,
track.segment.start_time_offset.microseconds * 1000,
)
)
print(
"\tEnd Time Offset : {}.{}".format(
track.segment.end_time_offset.seconds,
track.segment.end_time_offset.microseconds * 1000,
)
)
print("\tConfidence : {}".format(track.confidence))
# The object with timestamp and attributes per frame in the track.
for timestamped_object in track.timestamped_objects:
# Normalized Bounding box in a frame, where the object is located.
normalized_bounding_box = timestamped_object.normalized_bounding_box
print("\n\t\tLeft : {}".format(normalized_bounding_box.left))
print("\t\tTop : {}".format(normalized_bounding_box.top))
print("\t\tRight : {}".format(normalized_bounding_box.right))
print("\t\tBottom : {}".format(normalized_bounding_box.bottom))
# Optional. The attributes of the object in the bounding box.
for attribute in timestamped_object.attributes:
print("\n\t\t\tName : {}".format(attribute.name))
print("\t\t\tConfidence : {}".format(attribute.confidence))
print("\t\t\tValue : {}".format(attribute.value))
# Optional. Attributes in the track level.
for track_attribute in track.attributes:
print("\n\t\tName : {}".format(track_attribute.name))
print("\t\tConfidence : {}".format(track_attribute.confidence))
print("\t\tValue : {}".format(track_attribute.value))
# All video segments where the recognized logo appears. There might be
# multiple instances of the same logo class appearing in one VideoSegment.
for segment in logo_recognition_annotation.segments:
print(
"\n\tStart Time Offset : {}.{}".format(
segment.start_time_offset.seconds,
segment.start_time_offset.microseconds * 1000,
)
)
print(
"\tEnd Time Offset : {}.{}".format(
segment.end_time_offset.seconds,
segment.end_time_offset.microseconds * 1000,
)
)
# [END video_detect_logo_gcs]